Solveeit Logo

Question

Question: $\lim_{x \to \infty} \frac{\int_{0}^{x^2} sin t^5 dt}{x^{12}}$...

limx0x2sint5dtx12\lim_{x \to \infty} \frac{\int_{0}^{x^2} sin t^5 dt}{x^{12}}

Answer

0

Explanation

Solution

To evaluate the limit limx0x2sint5dtx12\lim_{x \to \infty} \frac{\int_{0}^{x^2} \sin t^5 dt}{x^{12}}, we first analyze the form of the limit as xx \to \infty.

Let N(x)=0x2sint5dtN(x) = \int_{0}^{x^2} \sin t^5 dt and D(x)=x12D(x) = x^{12}.

As xx \to \infty, the denominator D(x)=x12D(x) = x^{12} \to \infty.

For the numerator N(x)=0x2sint5dtN(x) = \int_{0}^{x^2} \sin t^5 dt: As xx \to \infty, the upper limit x2x^2 \to \infty. The integral 0sint5dt\int_{0}^{\infty} \sin t^5 dt is a type of Fresnel integral. To check its convergence, we can use the substitution u=t5u = t^5, so t=u1/5t = u^{1/5} and dt=15u4/5dudt = \frac{1}{5} u^{-4/5} du. The integral becomes 0sinu15u4/5du=150sinuu4/5du\int_{0}^{\infty} \sin u \cdot \frac{1}{5} u^{-4/5} du = \frac{1}{5} \int_{0}^{\infty} \frac{\sin u}{u^{4/5}} du. This integral converges by Dirichlet's test, as 1u4/5\frac{1}{u^{4/5}} is monotonically decreasing and tends to 0 as uu \to \infty, and sinudu\int \sin u du is bounded. Therefore, limx0x2sint5dt\lim_{x \to \infty} \int_{0}^{x^2} \sin t^5 dt converges to a finite value.

Since the numerator approaches a finite value and the denominator approaches infinity, the limit is of the form finite value\frac{\text{finite value}}{\infty}, which is 0.

Alternatively, if we assume the limit is of the indeterminate form \frac{\infty}{\infty} (which is a common assumption for such problems in competitive exams, leading to the application of L'Hopital's rule even if not strictly applicable by definition), we can apply L'Hopital's rule.

Let f(x)=0x2sint5dtf(x) = \int_{0}^{x^2} \sin t^5 dt and g(x)=x12g(x) = x^{12}. We need to find f(x)f'(x) and g(x)g'(x).

Using the Leibniz integral rule, ddxa(x)b(x)h(t)dt=h(b(x))b(x)h(a(x))a(x)\frac{d}{dx} \int_{a(x)}^{b(x)} h(t) dt = h(b(x)) b'(x) - h(a(x)) a'(x): f(x)=ddx0x2sint5dt=sin((x2)5)ddx(x2)sin(05)ddx(0)f'(x) = \frac{d}{dx} \int_{0}^{x^2} \sin t^5 dt = \sin((x^2)^5) \cdot \frac{d}{dx}(x^2) - \sin(0^5) \cdot \frac{d}{dx}(0) f(x)=sin(x10)(2x)0f'(x) = \sin(x^{10}) \cdot (2x) - 0 f(x)=2xsin(x10)f'(x) = 2x \sin(x^{10})

Now, find the derivative of the denominator: g(x)=ddx(x12)=12x11g'(x) = \frac{d}{dx} (x^{12}) = 12x^{11}

Applying L'Hopital's rule: limxf(x)g(x)=limxf(x)g(x)\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} =limx2xsin(x10)12x11= \lim_{x \to \infty} \frac{2x \sin(x^{10})}{12x^{11}} =limxsin(x10)6x10= \lim_{x \to \infty} \frac{\sin(x^{10})}{6x^{10}}

Let y=x10y = x^{10}. As xx \to \infty, yy \to \infty. The limit becomes: limysiny6y\lim_{y \to \infty} \frac{\sin y}{6y}

We know that the sine function is bounded, i.e., 1siny1-1 \le \sin y \le 1. Dividing by 6y6y (which is positive for yy \to \infty): 16ysiny6y16y\frac{-1}{6y} \le \frac{\sin y}{6y} \le \frac{1}{6y}

As yy \to \infty, 16y0\frac{-1}{6y} \to 0 and 16y0\frac{1}{6y} \to 0. By the Squeeze Theorem, limysiny6y=0\lim_{y \to \infty} \frac{\sin y}{6y} = 0.

Both methods yield the same result.