Solveeit Logo

Question

Question: $\lim_{x \to \frac{\pi}{4}}(\cos x - \sin x)^{(x-\frac{\pi}{4})}$ is equal to :...

limxπ4(cosxsinx)(xπ4)\lim_{x \to \frac{\pi}{4}}(\cos x - \sin x)^{(x-\frac{\pi}{4})} is equal to :

Answer

1

Explanation

Solution

To evaluate the limit limxπ4(cosxsinx)(xπ4)\lim_{x \to \frac{\pi}{4}}(\cos x - \sin x)^{(x-\frac{\pi}{4})}, first determine its form.

As xπ4x \to \frac{\pi}{4}:

The base cosxsinxcos(π4)sin(π4)=1212=0\cos x - \sin x \to \cos(\frac{\pi}{4}) - \sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0.

The exponent xπ4π4π4=0x - \frac{\pi}{4} \to \frac{\pi}{4} - \frac{\pi}{4} = 0.

So, the limit is of the indeterminate form 000^0.

To solve limits of the form f(x)g(x)f(x)^{g(x)}, we use the property f(x)g(x)=eg(x)lnf(x)f(x)^{g(x)} = e^{g(x)\ln f(x)}.

Let L=limxπ4(cosxsinx)(xπ4)L = \lim_{x \to \frac{\pi}{4}}(\cos x - \sin x)^{(x-\frac{\pi}{4})}.

Then lnL=limxπ4(xπ4)ln(cosxsinx)\ln L = \lim_{x \to \frac{\pi}{4}} (x-\frac{\pi}{4}) \ln(\cos x - \sin x).

For ln(cosxsinx)\ln(\cos x - \sin x) to be defined in real numbers, the argument (cosxsinx)(\cos x - \sin x) must be positive.

cosxsinx>0    cosx>sinx\cos x - \sin x > 0 \implies \cos x > \sin x.

In the vicinity of x=π4x = \frac{\pi}{4}, this condition holds for x<π4x < \frac{\pi}{4}. Therefore, we must consider the left-hand limit, i.e., limx(π4)\lim_{x \to (\frac{\pi}{4})^-}.

Let x=π4hx = \frac{\pi}{4} - h, where h0+h \to 0^+.

Then xπ4=hx - \frac{\pi}{4} = -h.

And cosxsinx=cos(π4h)sin(π4h)\cos x - \sin x = \cos(\frac{\pi}{4} - h) - \sin(\frac{\pi}{4} - h).

Using the compound angle formulas:

cos(π4h)=cosπ4cosh+sinπ4sinh=12(cosh+sinh)\cos(\frac{\pi}{4} - h) = \cos\frac{\pi}{4}\cos h + \sin\frac{\pi}{4}\sin h = \frac{1}{\sqrt{2}}(\cos h + \sin h).

sin(π4h)=sinπ4coshcosπ4sinh=12(coshsinh)\sin(\frac{\pi}{4} - h) = \sin\frac{\pi}{4}\cos h - \cos\frac{\pi}{4}\sin h = \frac{1}{\sqrt{2}}(\cos h - \sin h).

Substituting these into the expression for the base:

cosxsinx=12(cosh+sinh)12(coshsinh)\cos x - \sin x = \frac{1}{\sqrt{2}}(\cos h + \sin h) - \frac{1}{\sqrt{2}}(\cos h - \sin h) =12(cosh+sinhcosh+sinh)= \frac{1}{\sqrt{2}}(\cos h + \sin h - \cos h + \sin h) =12(2sinh)=2sinh= \frac{1}{\sqrt{2}}(2\sin h) = \sqrt{2}\sin h.

Now, substitute these into the limit expression for lnL\ln L:

lnL=limh0+(h)ln(2sinh)\ln L = \lim_{h \to 0^+} (-h) \ln(\sqrt{2}\sin h).

Using logarithm properties, ln(AB)=lnA+lnB\ln(AB) = \ln A + \ln B:

lnL=limh0+(h)[ln2+ln(sinh)]\ln L = \lim_{h \to 0^+} (-h) [\ln\sqrt{2} + \ln(\sin h)].

lnL=limh0+[hln2hln(sinh)]\ln L = \lim_{h \to 0^+} [-h\ln\sqrt{2} - h\ln(\sin h)].

We evaluate each term separately:

  1. limh0+(hln2)=0×ln2=0\lim_{h \to 0^+} (-h\ln\sqrt{2}) = 0 \times \ln\sqrt{2} = 0.

  2. limh0+(hln(sinh))\lim_{h \to 0^+} (-h\ln(\sin h)). This is of the form 0×()0 \times (-\infty) as h0+h \to 0^+ and sinh0+\sin h \to 0^+, so ln(sinh)\ln(\sin h) \to -\infty.

To apply L'Hopital's Rule, rewrite it as a fraction:

limh0+ln(sinh)1/h\lim_{h \to 0^+} \frac{-\ln(\sin h)}{1/h}. This is of the form \frac{\infty}{\infty}.

Apply L'Hopital's Rule:

limh0+ddh(ln(sinh))ddh(1/h)=limh0+coshsinh1h2\lim_{h \to 0^+} \frac{\frac{d}{dh}(-\ln(\sin h))}{\frac{d}{dh}(1/h)} = \lim_{h \to 0^+} \frac{-\frac{\cos h}{\sin h}}{-\frac{1}{h^2}}. =limh0+h2coshsinh= \lim_{h \to 0^+} \frac{h^2 \cos h}{\sin h}.

This is of the form 00\frac{0}{0}. We can rewrite it as:

limh0+(hsinhhcosh)\lim_{h \to 0^+} \left(\frac{h}{\sin h} \cdot h \cos h\right).

We know that limh0+sinhh=1\lim_{h \to 0^+} \frac{\sin h}{h} = 1, so limh0+hsinh=1\lim_{h \to 0^+} \frac{h}{\sin h} = 1.

Also, limh0+hcosh=0×cos(0)=0×1=0\lim_{h \to 0^+} h \cos h = 0 \times \cos(0) = 0 \times 1 = 0.

Therefore, limh0+(hln(sinh))=1×0=0\lim_{h \to 0^+} (-h\ln(\sin h)) = 1 \times 0 = 0.

Combining the results for both terms:

lnL=0+0=0\ln L = 0 + 0 = 0.

Since lnL=0\ln L = 0, we have L=e0=1L = e^0 = 1.

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Identify the indeterminate form 000^0.
  2. Use logarithm: L=limxaf(x)g(x)    lnL=limxag(x)lnf(x)L = \lim_{x \to a} f(x)^{g(x)} \implies \ln L = \lim_{x \to a} g(x) \ln f(x).
  3. Analyze the domain of ln(cosxsinx)\ln(\cos x - \sin x), which requires cosxsinx>0\cos x - \sin x > 0. This implies taking the left-hand limit as xπ4x \to \frac{\pi}{4}.
  4. Substitute x=π4hx = \frac{\pi}{4} - h and simplify the expression.
  5. Evaluate limh0+(h)[ln2+ln(sinh)]\lim_{h \to 0^+} (-h) [\ln\sqrt{2} + \ln(\sin h)] term by term.
  6. The first term hln20-h\ln\sqrt{2} \to 0.
  7. The second term hln(sinh)-h\ln(\sin h) is of 0×()0 \times (-\infty) form, convert to \frac{\infty}{\infty} form and apply L'Hopital's rule, or use standard limits like limh0sinhh=1\lim_{h \to 0} \frac{\sin h}{h} = 1. This term also evaluates to 0.
  8. So, lnL=0\ln L = 0, which means L=e0=1L = e^0 = 1.