Solveeit Logo

Question

Question: $\lim_{x \to 2^+} \lceil x^2 - 5x + 6 \rceil$...

limx2+x25x+6\lim_{x \to 2^+} \lceil x^2 - 5x + 6 \rceil

A

-1

B

0

C

1

D

2

Answer

0

Explanation

Solution

To evaluate the limit limx2+x25x+6\lim_{x \to 2^+} \lceil x^2 - 5x + 6 \rceil, we first analyze the expression inside the ceiling function, let g(x)=x25x+6g(x) = x^2 - 5x + 6.

Step 1: Evaluate the inner function at the limit point. Substitute x=2x=2 into g(x)g(x): g(2)=(2)25(2)+6=410+6=0g(2) = (2)^2 - 5(2) + 6 = 4 - 10 + 6 = 0.

Step 2: Determine the behavior of the inner function as xx approaches 22 from the right side (x2+x \to 2^+). We need to know if g(x)g(x) approaches 00 from values greater than 00 (i.e., 0+0^+) or from values less than 00 (i.e., 00^-). The quadratic expression g(x)=x25x+6g(x) = x^2 - 5x + 6 can be factored as g(x)=(x2)(x3)g(x) = (x-2)(x-3).

As x2+x \to 2^+:

  • The term (x2)(x-2) will be a small positive number (e.g., if x=2.001x=2.001, x2=0.001x-2 = 0.001). We denote this as 0+0^+.
  • The term (x3)(x-3) will approach 23=12-3 = -1.

Therefore, g(x)=(x2)(x3)g(x) = (x-2)(x-3) approaches (0+)(1)(0^+)(-1). The product of a small positive number and a negative number is a small negative number. So, g(x)g(x) approaches 00 from the negative side, which we denote as 00^-.

Step 3: Evaluate the ceiling function with the determined behavior. Let y=g(x)y = g(x). As x2+x \to 2^+, y0y \to 0^-. Now we need to find limy0y\lim_{y \to 0^-} \lceil y \rceil. The ceiling function y\lceil y \rceil gives the smallest integer greater than or equal to yy. If yy is a number slightly less than 00 (for example, y=0.001y = -0.001, y=0.5y = -0.5, or y=0.99y = -0.99), the smallest integer greater than or equal to yy is 00. For instance: 0.001=0\lceil -0.001 \rceil = 0 0.5=0\lceil -0.5 \rceil = 0 0.99=0\lceil -0.99 \rceil = 0

Thus, limy0y=0\lim_{y \to 0^-} \lceil y \rceil = 0.

Combining these steps, we get: limx2+x25x+6=limy0y=0\lim_{x \to 2^+} \lceil x^2 - 5x + 6 \rceil = \lim_{y \to 0^-} \lceil y \rceil = 0.