Solveeit Logo

Question

Question: $\lim_{x \to 1} (\frac{1}{1-x} - \frac{3}{1-x^3})$ is equal to:...

limx1(11x31x3)\lim_{x \to 1} (\frac{1}{1-x} - \frac{3}{1-x^3}) is equal to:

A

-1

B

0

C

1

D

D.N.E.

Answer

-1

Explanation

Solution

To evaluate the limit limx1(11x31x3)\lim_{x \to 1} (\frac{1}{1-x} - \frac{3}{1-x^3}), we first combine the two fractions into a single one.

Step 1: Combine the fractions. The common denominator for (1x)(1-x) and (1x3)(1-x^3) is (1x3)(1-x^3), since 1x3=(1x)(1+x+x2)1-x^3 = (1-x)(1+x+x^2). 11x31x3=1(1+x+x2)(1x)(1+x+x2)3(1x)(1+x+x2)\frac{1}{1-x} - \frac{3}{1-x^3} = \frac{1(1+x+x^2)}{(1-x)(1+x+x^2)} - \frac{3}{(1-x)(1+x+x^2)} =1+x+x23(1x)(1+x+x2)= \frac{1+x+x^2-3}{(1-x)(1+x+x^2)} =x2+x2(1x)(1+x+x2)= \frac{x^2+x-2}{(1-x)(1+x+x^2)}

Step 2: Factor the numerator. The numerator is a quadratic expression x2+x2x^2+x-2. We look for two numbers that multiply to -2 and add to 1. These numbers are 2 and -1. So, x2+x2=(x+2)(x1)x^2+x-2 = (x+2)(x-1).

Step 3: Substitute the factored numerator and simplify. Substitute the factored numerator back into the expression: (x+2)(x1)(1x)(1+x+x2)\frac{(x+2)(x-1)}{(1-x)(1+x+x^2)} We notice that (x1)=(1x)(x-1) = -(1-x). Substitute this into the expression: (x+2)((1x))(1x)(1+x+x2)\frac{(x+2)(-(1-x))}{(1-x)(1+x+x^2)} For x1x \neq 1, we can cancel the term (1x)(1-x) from the numerator and the denominator: =(x+2)1+x+x2= \frac{-(x+2)}{1+x+x^2}

Step 4: Evaluate the limit. Now, we can evaluate the limit by substituting x=1x=1 into the simplified expression, as the denominator 1+x+x21+x+x^2 is not zero at x=1x=1 (it becomes 1+1+12=31+1+1^2=3). limx1(x+2)1+x+x2=(1+2)1+1+12\lim_{x \to 1} \frac{-(x+2)}{1+x+x^2} = \frac{-(1+2)}{1+1+1^2} =33= \frac{-3}{3} =1= -1

Alternative Method: Using L'Hopital's Rule After combining the fractions, we got the form x2+x21x3\frac{x^2+x-2}{1-x^3}. When x=1x=1, the numerator is 12+12=01^2+1-2=0 and the denominator is 113=01-1^3=0. This is an indeterminate form 00\frac{0}{0}, so we can apply L'Hopital's Rule. Let f(x)=x2+x2f(x) = x^2+x-2 and g(x)=1x3g(x) = 1-x^3. Then f(x)=2x+1f'(x) = 2x+1 and g(x)=3x2g'(x) = -3x^2. limx1f(x)g(x)=limx12x+13x2\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{2x+1}{-3x^2} Substitute x=1x=1: =2(1)+13(1)2=33=1= \frac{2(1)+1}{-3(1)^2} = \frac{3}{-3} = -1

Both methods yield the same result.