Solveeit Logo

Question

Question: $\lim_{x \to 0^+} x \ln x$...

limx0+xlnx\lim_{x \to 0^+} x \ln x

Answer

0

Explanation

Solution

The limit limx0+xlnx\lim_{x \to 0^+} x \ln x is an indeterminate form 0×()0 \times (-\infty).

Rewrite it as limx0+lnx1/x\lim_{x \to 0^+} \frac{\ln x}{1/x}, which is an \frac{-\infty}{\infty} form.

Apply L'Hôpital's Rule by differentiating the numerator and denominator: limx0+1/x1/x2\lim_{x \to 0^+} \frac{1/x}{-1/x^2}.

Simplify the expression to limx0+(x)\lim_{x \to 0^+} (-x).

Evaluating this limit gives 00.