Solveeit Logo

Question

Question: $\lim_{x \to 0} \left( \sin^2\frac{\pi}{2-ax} \right)^{\sec^2\frac{\pi}{2-bx}}$...

limx0(sin2π2ax)sec2π2bx\lim_{x \to 0} \left( \sin^2\frac{\pi}{2-ax} \right)^{\sec^2\frac{\pi}{2-bx}}

Answer

ea2b2e^{-\frac{a^2}{b^2}}

Explanation

Solution

The limit is of the indeterminate form 11^\infty. Using the property limxc[f(x)]g(x)=elimxcg(x)[f(x)1]\lim_{x \to c} [f(x)]^{g(x)} = e^{\lim_{x \to c} g(x) [f(x) - 1]}, we identify f(x)=sin2(π2ax)f(x) = \sin^2\left(\frac{\pi}{2-ax}\right) and g(x)=sec2(π2bx)g(x) = \sec^2\left(\frac{\pi}{2-bx}\right). By applying trigonometric identities sin(π2θ)=cosθ\sin(\frac{\pi}{2}-\theta) = \cos\theta and secθ=1/cosθ\sec\theta = 1/\cos\theta, we simplify f(x)f(x) to cos2(ax)\cos^2(ax) and g(x)g(x) to 1sin2(bx)\frac{1}{\sin^2(bx)}. Then f(x)1=cos2(ax)1=sin2(ax)f(x)-1 = \cos^2(ax)-1 = -\sin^2(ax). The exponent limit becomes limx01sin2(bx)(sin2(ax))=limx0sin2(ax)sin2(bx)\lim_{x \to 0} \frac{1}{\sin^2(bx)}(-\sin^2(ax)) = \lim_{x \to 0} -\frac{\sin^2(ax)}{\sin^2(bx)}. Using the standard limit limu0sinuu=1\lim_{u \to 0} \frac{\sin u}{u}=1, this simplifies to a2b2-\frac{a^2}{b^2}. Therefore, the original limit is ea2/b2e^{-a^2/b^2}.