Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x}$...

limx0tan(tanx)sin(sinx)tanxsinx\lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x}

A

1

B

2

C

1/2

D

3/2

Answer

2

Explanation

Solution

To evaluate the limit limx0tan(tanx)sin(sinx)tanxsinx\lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x}, we can utilize Taylor series expansions for tanx\tan x and sinx\sin x around x=0x=0.

The Taylor series expansions are: tanx=x+x33+O(x5)\tan x = x + \frac{x^3}{3} + O(x^5) sinx=xx36+O(x5)\sin x = x - \frac{x^3}{6} + O(x^5)

First, we find the Taylor expansion for the denominator: tanxsinx=(x+x33+O(x5))(xx36+O(x5))\tan x - \sin x = \left(x + \frac{x^3}{3} + O(x^5)\right) - \left(x - \frac{x^3}{6} + O(x^5)\right) tanxsinx=x33+x36+O(x5)=2x3+x36+O(x5)=3x36+O(x5)=x32+O(x5)\tan x - \sin x = \frac{x^3}{3} + \frac{x^3}{6} + O(x^5) = \frac{2x^3 + x^3}{6} + O(x^5) = \frac{3x^3}{6} + O(x^5) = \frac{x^3}{2} + O(x^5).

Next, we find the Taylor expansion for the numerator, tan(tanx)sin(sinx)\tan(\tan x) - \sin(\sin x). For tan(tanx)\tan(\tan x): Let u=tanx=x+x33+O(x5)u = \tan x = x + \frac{x^3}{3} + O(x^5). Using tanu=u+u33+O(u5)\tan u = u + \frac{u^3}{3} + O(u^5): tan(tanx)=tan(x+x33+O(x5))=(x+x33+O(x5))+13(x+x33+O(x5))3+O(x5)\tan(\tan x) = \tan\left(x + \frac{x^3}{3} + O(x^5)\right) = \left(x + \frac{x^3}{3} + O(x^5)\right) + \frac{1}{3}\left(x + \frac{x^3}{3} + O(x^5)\right)^3 + O(x^5) tan(tanx)=x+x33+13(x3)+O(x5)=x+2x33+O(x5)\tan(\tan x) = x + \frac{x^3}{3} + \frac{1}{3}(x^3) + O(x^5) = x + \frac{2x^3}{3} + O(x^5).

For sin(sinx)\sin(\sin x): Let v=sinx=xx36+O(x5)v = \sin x = x - \frac{x^3}{6} + O(x^5). Using sinv=vv36+O(v5)\sin v = v - \frac{v^3}{6} + O(v^5): sin(sinx)=sin(xx36+O(x5))=(xx36+O(x5))16(xx36+O(x5))3+O(x5)\sin(\sin x) = \sin\left(x - \frac{x^3}{6} + O(x^5)\right) = \left(x - \frac{x^3}{6} + O(x^5)\right) - \frac{1}{6}\left(x - \frac{x^3}{6} + O(x^5)\right)^3 + O(x^5) sin(sinx)=xx3616(x3)+O(x5)=x2x36+O(x5)=xx33+O(x5)\sin(\sin x) = x - \frac{x^3}{6} - \frac{1}{6}(x^3) + O(x^5) = x - \frac{2x^3}{6} + O(x^5) = x - \frac{x^3}{3} + O(x^5).

Now, we find the expansion for the numerator: tan(tanx)sin(sinx)=(x+2x33+O(x5))(xx33+O(x5))\tan(\tan x) - \sin(\sin x) = \left(x + \frac{2x^3}{3} + O(x^5)\right) - \left(x - \frac{x^3}{3} + O(x^5)\right) tan(tanx)sin(sinx)=2x33+x33+O(x5)=x3+O(x5)\tan(\tan x) - \sin(\sin x) = \frac{2x^3}{3} + \frac{x^3}{3} + O(x^5) = x^3 + O(x^5).

Finally, we evaluate the limit: limx0tan(tanx)sin(sinx)tanxsinx=limx0x3+O(x5)x32+O(x5)\lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x} = \lim_{x \to 0} \frac{x^3 + O(x^5)}{\frac{x^3}{2} + O(x^5)} Dividing the numerator and denominator by x3x^3: limx01+O(x2)12+O(x2)=112=2\lim_{x \to 0} \frac{1 + O(x^2)}{\frac{1}{2} + O(x^2)} = \frac{1}{\frac{1}{2}} = 2