Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{tan2024x - tan2022x - tan2x}{x^3}$...

limx0tan2024xtan2022xtan2xx3\lim_{x \to 0} \frac{tan2024x - tan2022x - tan2x}{x^3}

Answer

8185056

Explanation

Solution

Let the given limit be LL. We have L=limx0tan(2024x)tan(2022x)tan(2x)x3L = \lim_{x \to 0} \frac{\tan(2024x) - \tan(2022x) - \tan(2x)}{x^3}. This is a 00\frac{0}{0} form as x0x \to 0. We can use the Taylor series expansion of tanu\tan u around u=0u=0. The Taylor series expansion for tanu\tan u up to the u3u^3 term is tanu=u+u33+O(u5)\tan u = u + \frac{u^3}{3} + O(u^5).

Let a=2024a = 2024, b=2022b = 2022, and c=2c = 2. The expression is tan(ax)tan(bx)tan(cx)x3\frac{\tan(ax) - \tan(bx) - \tan(cx)}{x^3}. We notice that a=b+ca = b+c, i.e., 2024=2022+22024 = 2022 + 2. This relationship will simplify the calculation.

Using the Taylor expansion: tan(ax)=ax+(ax)33+O((ax)5)=ax+a3x33+O(x5)\tan(ax) = ax + \frac{(ax)^3}{3} + O((ax)^5) = ax + \frac{a^3 x^3}{3} + O(x^5) tan(bx)=bx+(bx)33+O((bx)5)=bx+b3x33+O(x5)\tan(bx) = bx + \frac{(bx)^3}{3} + O((bx)^5) = bx + \frac{b^3 x^3}{3} + O(x^5) tan(cx)=cx+(cx)33+O((cx)5)=cx+c3x33+O(x5)\tan(cx) = cx + \frac{(cx)^3}{3} + O((cx)^5) = cx + \frac{c^3 x^3}{3} + O(x^5)

Substitute these expansions into the numerator: Numerator =(ax+a3x33+O(x5))(bx+b3x33+O(x5))(cx+c3x33+O(x5))= \left(ax + \frac{a^3 x^3}{3} + O(x^5)\right) - \left(bx + \frac{b^3 x^3}{3} + O(x^5)\right) - \left(cx + \frac{c^3 x^3}{3} + O(x^5)\right) Numerator =(axbxcx)+(a3x33b3x33c3x33)+O(x5)= (ax - bx - cx) + \left(\frac{a^3 x^3}{3} - \frac{b^3 x^3}{3} - \frac{c^3 x^3}{3}\right) + O(x^5) Numerator =(abc)x+a3b3c33x3+O(x5)= (a - b - c)x + \frac{a^3 - b^3 - c^3}{3} x^3 + O(x^5)

Since a=b+ca = b+c, we have abc=0a - b - c = 0. So, the term with xx vanishes: Numerator =(0)x+a3b3c33x3+O(x5)= (0)x + \frac{a^3 - b^3 - c^3}{3} x^3 + O(x^5) Numerator =a3b3c33x3+O(x5)= \frac{a^3 - b^3 - c^3}{3} x^3 + O(x^5)

Now, divide the numerator by x3x^3: Numeratorx3=a3b3c33x3+O(x5)x3=a3b3c33+O(x2)\frac{\text{Numerator}}{x^3} = \frac{\frac{a^3 - b^3 - c^3}{3} x^3 + O(x^5)}{x^3} = \frac{a^3 - b^3 - c^3}{3} + O(x^2)

Take the limit as x0x \to 0: L=limx0(a3b3c33+O(x2))=a3b3c33L = \lim_{x \to 0} \left(\frac{a^3 - b^3 - c^3}{3} + O(x^2)\right) = \frac{a^3 - b^3 - c^3}{3}

We need to calculate a3b3c3a^3 - b^3 - c^3 with a=2024a=2024, b=2022b=2022, c=2c=2. Since a=b+ca = b+c, we can use the identity: if x+y+z=0x+y+z=0, then x3+y3+z3=3xyzx^3+y^3+z^3 = 3xyz. Let x=ax=a, y=by=-b, z=cz=-c. Then x+y+z=abc=0x+y+z = a - b - c = 0. So, a3+(b)3+(c)3=3(a)(b)(c)a^3 + (-b)^3 + (-c)^3 = 3(a)(-b)(-c). a3b3c3=3abca^3 - b^3 - c^3 = 3abc.

Substitute this into the limit expression: L=3abc3=abcL = \frac{3abc}{3} = abc.

Now, substitute the values of aa, bb, and cc: L=2024×2022×2L = 2024 \times 2022 \times 2. L=2024×(2022×2)L = 2024 \times (2022 \times 2) L=2024×4044L = 2024 \times 4044.

Calculate the product: 2024×4044=(2000+24)×(4000+44)2024 \times 4044 = (2000 + 24) \times (4000 + 44) =2000×4000+2000×44+24×4000+24×44= 2000 \times 4000 + 2000 \times 44 + 24 \times 4000 + 24 \times 44 =8000000+88000+96000+1056= 8000000 + 88000 + 96000 + 1056 =8000000+184000+1056= 8000000 + 184000 + 1056 =8184000+1056= 8184000 + 1056 =8185056= 8185056.

Thus, the limit is 8185056.