Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{\sin(6x^2)}{ln \cos(2x^2 - x)}$ is equal to...

limx0sin(6x2)lncos(2x2x)\lim_{x \to 0} \frac{\sin(6x^2)}{ln \cos(2x^2 - x)} is equal to

A

12

B

-12

C

6

D

-6

Answer

-12

Explanation

Solution

To evaluate the limit limx0sin(6x2)lncos(2x2x)\lim_{x \to 0} \frac{\sin(6x^2)}{\ln \cos(2x^2 - x)}, we first check the form of the limit by substituting x=0x=0:

Numerator: sin(6(0)2)=sin(0)=0\sin(6(0)^2) = \sin(0) = 0

Denominator: lncos(2(0)20)=lncos(0)=ln(1)=0\ln \cos(2(0)^2 - 0) = \ln \cos(0) = \ln(1) = 0

The limit is of the indeterminate form 00\frac{0}{0}. We can use standard limit formulas.

We use the following standard limits and approximations for small yy:

  1. limy0sinyy=1    sinyy\lim_{y \to 0} \frac{\sin y}{y} = 1 \implies \sin y \approx y

  2. limy0ln(1+y)y=1    ln(1+y)y\lim_{y \to 0} \frac{\ln(1+y)}{y} = 1 \implies \ln(1+y) \approx y

  3. limy01cosyy2=12    1cosyy22    cosy1y22\lim_{y \to 0} \frac{1-\cos y}{y^2} = \frac{1}{2} \implies 1-\cos y \approx \frac{y^2}{2} \implies \cos y - 1 \approx -\frac{y^2}{2}

Let's apply these to the given expression:

Numerator:

sin(6x2)\sin(6x^2)

As x0x \to 0, 6x206x^2 \to 0. Using approximation sinyy\sin y \approx y:

sin(6x2)6x2\sin(6x^2) \approx 6x^2

Denominator:

lncos(2x2x)\ln \cos(2x^2 - x)

We rewrite cos(2x2x)\cos(2x^2 - x) as 1+(cos(2x2x)1)1 + (\cos(2x^2 - x) - 1).

Let Y=cos(2x2x)1Y = \cos(2x^2 - x) - 1. As x0x \to 0, 2x2x02x^2 - x \to 0, so cos(2x2x)cos(0)=1\cos(2x^2 - x) \to \cos(0) = 1, which means Y0Y \to 0.

Using approximation ln(1+Y)Y\ln(1+Y) \approx Y:

lncos(2x2x)=ln(1+(cos(2x2x)1))cos(2x2x)1\ln \cos(2x^2 - x) = \ln(1 + (\cos(2x^2 - x) - 1)) \approx \cos(2x^2 - x) - 1

Now, we need to approximate cos(2x2x)1\cos(2x^2 - x) - 1.

Let θ=2x2x\theta = 2x^2 - x. As x0x \to 0, θ0\theta \to 0.

Using approximation cosθ1θ22\cos \theta - 1 \approx -\frac{\theta^2}{2}:

cos(2x2x)1(2x2x)22\cos(2x^2 - x) - 1 \approx -\frac{(2x^2 - x)^2}{2}

Substitute these approximations back into the limit expression:

limx0sin(6x2)lncos(2x2x)=limx06x2(2x2x)22\lim_{x \to 0} \frac{\sin(6x^2)}{\ln \cos(2x^2 - x)} = \lim_{x \to 0} \frac{6x^2}{-\frac{(2x^2 - x)^2}{2}}

Simplify the denominator:

(2x2x)2=(x(2x1))2=x2(2x1)2(2x^2 - x)^2 = (x(2x - 1))^2 = x^2(2x - 1)^2

So the limit becomes:

limx06x2x2(2x1)22\lim_{x \to 0} \frac{6x^2}{-\frac{x^2(2x - 1)^2}{2}}

Cancel out x2x^2 from the numerator and denominator (since x0x \ne 0 as x0x \to 0):

=limx06(2x1)22= \lim_{x \to 0} \frac{6}{-\frac{(2x - 1)^2}{2}}

Now, substitute x=0x=0:

=6(2(0)1)22= \frac{6}{-\frac{(2(0) - 1)^2}{2}}

=6(1)22= \frac{6}{-\frac{(-1)^2}{2}}

=612= \frac{6}{-\frac{1}{2}}

=6×(2)= 6 \times (-2)

=12= -12

The final answer is 12\boxed{-12}.