Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} = L$. If $L$ is finite, then $L - a =$...

limx0sin2x+asinxx3=L\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} = L. If LL is finite, then La=L - a =

Answer

1

Explanation

Solution

The problem asks us to find the value of LaL-a given that limx0sin2x+asinxx3=L\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} = L and LL is finite.

1. Analyze the Indeterminate Form: As x0x \to 0, the numerator sin2x+asinxsin(0)+asin(0)=0\sin 2x + a \sin x \to \sin(0) + a \sin(0) = 0. The denominator x30x^3 \to 0. So, the limit is of the indeterminate form 00\frac{0}{0}.

2. Use Taylor Series Expansion: To evaluate the limit and find the value of aa that makes LL finite, we can use the Taylor series expansion for sinx\sin x and sin2x\sin 2x around x=0x=0: sinx=xx33!+x55!=xx36+O(x5)\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = x - \frac{x^3}{6} + O(x^5) sin2x=(2x)(2x)33!+(2x)55!=2x8x36+O(x5)=2x4x33+O(x5)\sin 2x = (2x) - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} - \dots = 2x - \frac{8x^3}{6} + O(x^5) = 2x - \frac{4x^3}{3} + O(x^5)

3. Substitute Expansions into the Numerator: Substitute these expansions into the numerator of the given limit expression: Numerator (N(x)N(x)) =sin2x+asinx= \sin 2x + a \sin x N(x)=(2x4x33+O(x5))+a(xx36+O(x5))N(x) = \left(2x - \frac{4x^3}{3} + O(x^5)\right) + a \left(x - \frac{x^3}{6} + O(x^5)\right) Group terms by powers of xx: N(x)=(2+a)x(43+a6)x3+O(x5)N(x) = (2+a)x - \left(\frac{4}{3} + \frac{a}{6}\right)x^3 + O(x^5)

4. Determine the value of 'a' for a Finite Limit: For the limit L=limx0N(x)x3L = \lim_{x \to 0} \frac{N(x)}{x^3} to be finite, the lowest power of xx in the numerator must be at least x3x^3. This means the coefficient of xx in N(x)N(x) must be zero. 2+a=02+a = 0 a=2a = -2

5. Calculate the value of 'L': Substitute a=2a = -2 back into the expression for N(x)N(x): N(x)=(2+(2))x(43+26)x3+O(x5)N(x) = (2 + (-2))x - \left(\frac{4}{3} + \frac{-2}{6}\right)x^3 + O(x^5) N(x)=0x(4313)x3+O(x5)N(x) = 0x - \left(\frac{4}{3} - \frac{1}{3}\right)x^3 + O(x^5) N(x)=(33)x3+O(x5)N(x) = -\left(\frac{3}{3}\right)x^3 + O(x^5) N(x)=x3+O(x5)N(x) = -x^3 + O(x^5)

Now, substitute this back into the limit expression for LL: L=limx0x3+O(x5)x3L = \lim_{x \to 0} \frac{-x^3 + O(x^5)}{x^3} L=limx0(x3x3+O(x5)x3)L = \lim_{x \to 0} \left(\frac{-x^3}{x^3} + \frac{O(x^5)}{x^3}\right) L=limx0(1+O(x2))L = \lim_{x \to 0} (-1 + O(x^2)) As x0x \to 0, O(x2)0O(x^2) \to 0. So, L=1L = -1.

6. Calculate L - a: We found a=2a = -2 and L=1L = -1. La=1(2)L - a = -1 - (-2) La=1+2L - a = -1 + 2 La=1L - a = 1

The final answer is 1\boxed{1}.

Explanation of the solution: The limit is of the form 00\frac{0}{0}. For the limit to be finite, the lowest power of xx in the numerator must be at least x3x^3. Using Taylor series expansion for sinx=xx36+\sin x = x - \frac{x^3}{6} + \dots and sin2x=2x4x33+\sin 2x = 2x - \frac{4x^3}{3} + \dots, the numerator becomes (2+a)x(43+a6)x3+(2+a)x - (\frac{4}{3} + \frac{a}{6})x^3 + \dots. For the limit to be finite, the coefficient of xx must be zero, so 2+a=0    a=22+a=0 \implies a=-2. Substituting a=2a=-2, the numerator becomes x3+-x^3 + \dots. Dividing by x3x^3, the limit L=1L = -1. Therefore, La=1(2)=1L-a = -1 - (-2) = 1.