Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{(\cos x)^{\csc^2x}-e^{\csc^2x(\cos x -1)}}{x^2}$...

limx0(cosx)csc2xecsc2x(cosx1)x2\lim_{x \to 0} \frac{(\cos x)^{\csc^2x}-e^{\csc^2x(\cos x -1)}}{x^2}

Answer

18e-\frac{1}{8\sqrt{e}}

Explanation

Solution

The given limit is limx0(cosx)csc2xecsc2x(cosx1)x2\lim_{x \to 0} \frac{(\cos x)^{\csc^2x}-e^{\csc^2x(\cos x -1)}}{x^2}. This is of the indeterminate form 00\frac{0}{0}. We will use Maclaurin series expansions for the functions involved.

We need the series expansions for cosx\cos x, sinx\sin x, eue^u, and ln(1+u)\ln(1+u) around x=0x=0. cosx=1x22!+x44!O(x6)=1x22+x424O(x6)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - O(x^6) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - O(x^6) sinx=xx33!+O(x5)=xx36+O(x5)\sin x = x - \frac{x^3}{3!} + O(x^5) = x - \frac{x^3}{6} + O(x^5) eu=1+u+u22!+O(u3)e^u = 1 + u + \frac{u^2}{2!} + O(u^3) ln(1+u)=uu22+u33O(u4)\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - O(u^4)

First, let's find the expansion for csc2x\csc^2 x: sin2x=(xx36+O(x5))2=x2(1x26+O(x4))2=x2(12x26+O(x4))=x2(1x23+O(x4))\sin^2 x = (x - \frac{x^3}{6} + O(x^5))^2 = x^2(1 - \frac{x^2}{6} + O(x^4))^2 = x^2(1 - \frac{2x^2}{6} + O(x^4)) = x^2(1 - \frac{x^2}{3} + O(x^4)) csc2x=1sin2x=1x2(1x23+O(x4))=1x2(1x23+O(x4))1\csc^2 x = \frac{1}{\sin^2 x} = \frac{1}{x^2(1 - \frac{x^2}{3} + O(x^4))} = \frac{1}{x^2}(1 - \frac{x^2}{3} + O(x^4))^{-1} Using (1u)1=1+u+u2+(1-u)^{-1} = 1+u+u^2+\dots, we get: csc2x=1x2(1+x23+O(x4))\csc^2 x = \frac{1}{x^2}(1 + \frac{x^2}{3} + O(x^4))

Now, let's analyze the exponent term that appears in both parts of the numerator: E=csc2x(cosx1)E = \csc^2x(\cos x - 1). cosx1=x22+x424O(x6)\cos x - 1 = -\frac{x^2}{2} + \frac{x^4}{24} - O(x^6) E=1x2(1+x23+O(x4))(x22+x424O(x6))E = \frac{1}{x^2}(1 + \frac{x^2}{3} + O(x^4)) \left( -\frac{x^2}{2} + \frac{x^4}{24} - O(x^6) \right) E=(1+x23+O(x4))(12+x224O(x4))E = (1 + \frac{x^2}{3} + O(x^4)) \left( -\frac{1}{2} + \frac{x^2}{24} - O(x^4) \right) E=12+x224x26+O(x4)E = -\frac{1}{2} + \frac{x^2}{24} - \frac{x^2}{6} + O(x^4) E=12+x2(124424)+O(x4)E = -\frac{1}{2} + x^2 \left( \frac{1}{24} - \frac{4}{24} \right) + O(x^4) E=123x224+O(x4)=12x28+O(x4)E = -\frac{1}{2} - \frac{3x^2}{24} + O(x^4) = -\frac{1}{2} - \frac{x^2}{8} + O(x^4)

Let's evaluate the second term in the numerator, B=ecsc2x(cosx1)=eEB = e^{\csc^2x(\cos x -1)} = e^E: B=e1/2x2/8+O(x4)=e1/2ex2/8+O(x4)B = e^{-1/2 - x^2/8 + O(x^4)} = e^{-1/2} e^{-x^2/8 + O(x^4)} Using eu=1+u+O(u2)e^u = 1+u+O(u^2): B=e1/2(1+(x28+O(x4))+O(x4))B = e^{-1/2} \left( 1 + \left(-\frac{x^2}{8} + O(x^4)\right) + O(x^4) \right) B=e1/2(1x28+O(x4))B = e^{-1/2} \left( 1 - \frac{x^2}{8} + O(x^4) \right)

Now, let's evaluate the first term in the numerator, A=(cosx)csc2xA = (\cos x)^{\csc^2x}. We can write A=ecsc2xln(cosx)A = e^{\csc^2x \ln(\cos x)}. Let F=csc2xln(cosx)F = \csc^2x \ln(\cos x). First, expand ln(cosx)\ln(\cos x): ln(cosx)=ln(1+(cosx1))\ln(\cos x) = \ln(1 + (\cos x - 1)). Let u=cosx1=x22+x424O(x6)u = \cos x - 1 = -\frac{x^2}{2} + \frac{x^4}{24} - O(x^6). Using ln(1+u)=uu22+O(u3)\ln(1+u) = u - \frac{u^2}{2} + O(u^3): ln(cosx)=(x22+x424)12(x22)2+O(x6)\ln(\cos x) = \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) - \frac{1}{2}\left(-\frac{x^2}{2}\right)^2 + O(x^6) ln(cosx)=x22+x424x48+O(x6)\ln(\cos x) = -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^4}{8} + O(x^6) ln(cosx)=x22+x4(124324)+O(x6)\ln(\cos x) = -\frac{x^2}{2} + x^4\left(\frac{1}{24} - \frac{3}{24}\right) + O(x^6) ln(cosx)=x222x424+O(x6)=x22x412+O(x6)\ln(\cos x) = -\frac{x^2}{2} - \frac{2x^4}{24} + O(x^6) = -\frac{x^2}{2} - \frac{x^4}{12} + O(x^6)

Now, substitute this into FF: F=1x2(1+x23+O(x4))(x22x412+O(x6))F = \frac{1}{x^2}(1 + \frac{x^2}{3} + O(x^4)) \left( -\frac{x^2}{2} - \frac{x^4}{12} + O(x^6) \right) F=(1+x23+O(x4))(12x212+O(x4))F = (1 + \frac{x^2}{3} + O(x^4)) \left( -\frac{1}{2} - \frac{x^2}{12} + O(x^4) \right) F=12x212x26+O(x4)F = -\frac{1}{2} - \frac{x^2}{12} - \frac{x^2}{6} + O(x^4) F=12+x2(112212)+O(x4)F = -\frac{1}{2} + x^2\left(-\frac{1}{12} - \frac{2}{12}\right) + O(x^4) F=123x212+O(x4)=12x24+O(x4)F = -\frac{1}{2} - \frac{3x^2}{12} + O(x^4) = -\frac{1}{2} - \frac{x^2}{4} + O(x^4)

Now, A=eFA = e^F: A=e1/2x2/4+O(x4)=e1/2ex2/4+O(x4)A = e^{-1/2 - x^2/4 + O(x^4)} = e^{-1/2} e^{-x^2/4 + O(x^4)} Using eu=1+u+O(u2)e^u = 1+u+O(u^2): A=e1/2(1+(x24+O(x4))+O(x4))A = e^{-1/2} \left( 1 + \left(-\frac{x^2}{4} + O(x^4)\right) + O(x^4) \right) A=e1/2(1x24+O(x4))A = e^{-1/2} \left( 1 - \frac{x^2}{4} + O(x^4) \right)

Finally, substitute AA and BB back into the limit expression: limx0ABx2=limx0e1/2(1x24+O(x4))e1/2(1x28+O(x4))x2\lim_{x \to 0} \frac{A-B}{x^2} = \lim_{x \to 0} \frac{e^{-1/2} \left( 1 - \frac{x^2}{4} + O(x^4) \right) - e^{-1/2} \left( 1 - \frac{x^2}{8} + O(x^4) \right)}{x^2} =limx0e1/2(1x241+x28+O(x4))x2= \lim_{x \to 0} \frac{e^{-1/2} \left( 1 - \frac{x^2}{4} - 1 + \frac{x^2}{8} + O(x^4) \right)}{x^2} =limx0e1/2(2x28+x28+O(x4))x2= \lim_{x \to 0} \frac{e^{-1/2} \left( -\frac{2x^2}{8} + \frac{x^2}{8} + O(x^4) \right)}{x^2} =limx0e1/2(x28+O(x4))x2= \lim_{x \to 0} \frac{e^{-1/2} \left( -\frac{x^2}{8} + O(x^4) \right)}{x^2} =limx0e1/2(18+O(x2))= \lim_{x \to 0} e^{-1/2} \left( -\frac{1}{8} + O(x^2) \right) =18e1/2= -\frac{1}{8} e^{-1/2}

The final answer is 18e\boxed{-\frac{1}{8\sqrt{e}}}.

Solution: The limit is of the form 00\frac{0}{0}. We use Maclaurin series expansions.

  1. Expand csc2x\csc^2 x: csc2x=1x2(1+x23+O(x4))\csc^2 x = \frac{1}{x^2}(1 + \frac{x^2}{3} + O(x^4)).
  2. Expand the common exponent E=csc2x(cosx1)E = \csc^2x(\cos x - 1): cosx1=x22+x424O(x6)\cos x - 1 = -\frac{x^2}{2} + \frac{x^4}{24} - O(x^6). E=1x2(1+x23+O(x4))(x22+x424O(x6))=12x28+O(x4)E = \frac{1}{x^2}(1 + \frac{x^2}{3} + O(x^4))(-\frac{x^2}{2} + \frac{x^4}{24} - O(x^6)) = -\frac{1}{2} - \frac{x^2}{8} + O(x^4).
  3. Expand the second term ecsc2x(cosx1)=eEe^{\csc^2x(\cos x -1)} = e^E: eE=e1/2x2/8+O(x4)=e1/2(1x28+O(x4))e^E = e^{-1/2 - x^2/8 + O(x^4)} = e^{-1/2}(1 - \frac{x^2}{8} + O(x^4)).
  4. Expand the first term (cosx)csc2x=ecsc2xln(cosx)(\cos x)^{\csc^2x} = e^{\csc^2x \ln(\cos x)}. Let F=csc2xln(cosx)F = \csc^2x \ln(\cos x). ln(cosx)=ln(1+(cosx1))=(cosx1)(cosx1)22+O((cosx1)3)\ln(\cos x) = \ln(1 + (\cos x - 1)) = (\cos x - 1) - \frac{(\cos x - 1)^2}{2} + O((\cos x - 1)^3). ln(cosx)=(x22+x424)12(x22)2+O(x6)=x22x412+O(x6)\ln(\cos x) = (-\frac{x^2}{2} + \frac{x^4}{24}) - \frac{1}{2}(-\frac{x^2}{2})^2 + O(x^6) = -\frac{x^2}{2} - \frac{x^4}{12} + O(x^6). F=1x2(1+x23+O(x4))(x22x412+O(x6))=12x24+O(x4)F = \frac{1}{x^2}(1 + \frac{x^2}{3} + O(x^4))(-\frac{x^2}{2} - \frac{x^4}{12} + O(x^6)) = -\frac{1}{2} - \frac{x^2}{4} + O(x^4). So, (cosx)csc2x=eF=e1/2x2/4+O(x4)=e1/2(1x24+O(x4))(\cos x)^{\csc^2x} = e^F = e^{-1/2 - x^2/4 + O(x^4)} = e^{-1/2}(1 - \frac{x^2}{4} + O(x^4)).
  5. Substitute these expansions into the limit: limx0e1/2(1x24+O(x4))e1/2(1x28+O(x4))x2\lim_{x \to 0} \frac{e^{-1/2}(1 - \frac{x^2}{4} + O(x^4)) - e^{-1/2}(1 - \frac{x^2}{8} + O(x^4))}{x^2} =limx0e1/2(1x241+x28+O(x4))x2= \lim_{x \to 0} \frac{e^{-1/2}(1 - \frac{x^2}{4} - 1 + \frac{x^2}{8} + O(x^4))}{x^2} =limx0e1/2(x28+O(x4))x2=18e1/2= \lim_{x \to 0} \frac{e^{-1/2}(-\frac{x^2}{8} + O(x^4))}{x^2} = -\frac{1}{8}e^{-1/2}.

The final answer is 18e\boxed{-\frac{1}{8\sqrt{e}}}.