Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{(1+sinx)^{\frac{1}{2024}} - (1 - sinx)^{\frac{1}{2024}}}{x}$...

limx0(1+sinx)12024(1sinx)12024x\lim_{x \to 0} \frac{(1+sinx)^{\frac{1}{2024}} - (1 - sinx)^{\frac{1}{2024}}}{x}

Answer

1/1012

Explanation

Solution

The given limit is of the form 00\frac{0}{0} as x0x \to 0. We can solve this using L'Hopital's Rule, standard limit formulas, or binomial approximation.

Method 1: Using L'Hopital's Rule Let f(x)=(1+sinx)12024(1sinx)12024f(x) = (1+\sin x)^{\frac{1}{2024}} - (1 - \sin x)^{\frac{1}{2024}} and g(x)=xg(x) = x. Then f(x)=ddx[(1+sinx)12024(1sinx)12024]f'(x) = \frac{d}{dx} \left[ (1+\sin x)^{\frac{1}{2024}} - (1 - \sin x)^{\frac{1}{2024}} \right] Using the chain rule, dduun=nun1dudx\frac{d}{du} u^n = n u^{n-1} \frac{du}{dx}: f(x)=12024(1+sinx)120241cosx12024(1sinx)120241(cosx)f'(x) = \frac{1}{2024}(1+\sin x)^{\frac{1}{2024}-1} \cdot \cos x - \frac{1}{2024}(1-\sin x)^{\frac{1}{2024}-1} \cdot (-\cos x) f(x)=12024(1+sinx)20232024cosx+12024(1sinx)20232024cosxf'(x) = \frac{1}{2024}(1+\sin x)^{-\frac{2023}{2024}} \cos x + \frac{1}{2024}(1-\sin x)^{-\frac{2023}{2024}} \cos x g(x)=ddx(x)=1g'(x) = \frac{d}{dx}(x) = 1

Now, apply L'Hopital's Rule: limx0f(x)g(x)=limx0[12024(1+sinx)20232024cosx+12024(1sinx)20232024cosx]\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \left[ \frac{1}{2024}(1+\sin x)^{-\frac{2023}{2024}} \cos x + \frac{1}{2024}(1-\sin x)^{-\frac{2023}{2024}} \cos x \right] Substitute x=0x=0: =12024(1+sin0)20232024cos0+12024(1sin0)20232024cos0= \frac{1}{2024}(1+\sin 0)^{-\frac{2023}{2024}} \cos 0 + \frac{1}{2024}(1-\sin 0)^{-\frac{2023}{2024}} \cos 0 =12024(1+0)202320241+12024(10)202320241= \frac{1}{2024}(1+0)^{-\frac{2023}{2024}} \cdot 1 + \frac{1}{2024}(1-0)^{-\frac{2023}{2024}} \cdot 1 =12024(1)+12024(1)= \frac{1}{2024}(1) + \frac{1}{2024}(1) =22024=11012= \frac{2}{2024} = \frac{1}{1012}

Method 2: Using Standard Limit Formula and Binomial Approximation We know the standard limit formula: limy0(1+y)n1y=n\lim_{y \to 0} \frac{(1+y)^n - 1}{y} = n. Let n=12024n = \frac{1}{2024}. The expression can be rewritten as: limx0[(1+sinx)n1][(1sinx)n1]x\lim_{x \to 0} \frac{[(1+\sin x)^n - 1] - [(1 - \sin x)^n - 1]}{x} =limx0(1+sinx)n1xlimx0(1sinx)n1x= \lim_{x \to 0} \frac{(1+\sin x)^n - 1}{x} - \lim_{x \to 0} \frac{(1 - \sin x)^n - 1}{x}

For the first term: limx0(1+sinx)n1x=limx0(1+sinx)n1sinxsinxx\lim_{x \to 0} \frac{(1+\sin x)^n - 1}{x} = \lim_{x \to 0} \frac{(1+\sin x)^n - 1}{\sin x} \cdot \frac{\sin x}{x} As x0x \to 0, sinx0\sin x \to 0. Let y=sinxy = \sin x. =limy0(1+y)n1ylimx0sinxx= \lim_{y \to 0} \frac{(1+y)^n - 1}{y} \cdot \lim_{x \to 0} \frac{\sin x}{x} =n1=n= n \cdot 1 = n

For the second term: limx0(1sinx)n1x=limx0(1+(sinx))n1sinxsinxx\lim_{x \to 0} \frac{(1 - \sin x)^n - 1}{x} = \lim_{x \to 0} \frac{(1 + (-\sin x))^n - 1}{-\sin x} \cdot \frac{-\sin x}{x} As x0x \to 0, sinx0-\sin x \to 0. Let z=sinxz = -\sin x. =limz0(1+z)n1zlimx0sinxx= \lim_{z \to 0} \frac{(1+z)^n - 1}{z} \cdot \lim_{x \to 0} \frac{-\sin x}{x} =n(1)=n= n \cdot (-1) = -n

Combining the two terms: The limit is n(n)=2nn - (-n) = 2n. Substitute n=12024n = \frac{1}{2024}: 212024=22024=110122 \cdot \frac{1}{2024} = \frac{2}{2024} = \frac{1}{1012}

Alternatively, using binomial approximation (1+u)n1+nu(1+u)^n \approx 1+nu for small uu: As x0x \to 0, sinx0\sin x \to 0. (1+sinx)120241+12024sinx(1+\sin x)^{\frac{1}{2024}} \approx 1 + \frac{1}{2024} \sin x (1sinx)120241+12024(sinx)=112024sinx(1-\sin x)^{\frac{1}{2024}} \approx 1 + \frac{1}{2024} (-\sin x) = 1 - \frac{1}{2024} \sin x

Substitute these into the expression: limx0(1+12024sinx)(112024sinx)x\lim_{x \to 0} \frac{(1 + \frac{1}{2024} \sin x) - (1 - \frac{1}{2024} \sin x)}{x} =limx01+12024sinx1+12024sinxx= \lim_{x \to 0} \frac{1 + \frac{1}{2024} \sin x - 1 + \frac{1}{2024} \sin x}{x} =limx0212024sinxx= \lim_{x \to 0} \frac{2 \cdot \frac{1}{2024} \sin x}{x} =limx011012sinxx= \lim_{x \to 0} \frac{1}{1012} \frac{\sin x}{x} Since limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1: =110121=11012= \frac{1}{1012} \cdot 1 = \frac{1}{1012}

All methods yield the same result.