Solveeit Logo

Question

Question: $\lim_{x \to 0} (\cos x)^{\csc^2 x}$...

limx0(cosx)csc2x\lim_{x \to 0} (\cos x)^{\csc^2 x}

Answer

e1/2e^{-1/2}

Explanation

Solution

The limit is of the indeterminate form 11^\infty. We use the property that if limxa[f(x)]g(x)\lim_{x \to a} [f(x)]^{g(x)} is 11^\infty, then it equals elimxag(x)[f(x)1]e^{\lim_{x \to a} g(x) [f(x) - 1]}. We evaluate the exponent limit limx0csc2x(cosx1)=limx0cosx1sin2x\lim_{x \to 0} \csc^2 x (\cos x - 1) = \lim_{x \to 0} \frac{\cos x - 1}{\sin^2 x}. This is of the form 00\frac{0}{0}. By dividing numerator and denominator by x2x^2 and using standard limits limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} and limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1, we find the exponent limit to be 12-\frac{1}{2}. Therefore, the original limit is e1/2e^{-1/2}.