Solveeit Logo

Question

Question: \[\lim_{x \rightarrow \pi/2}\frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} =\]...

limxπ/2acotxacosxcotxcosx=\lim_{x \rightarrow \pi/2}\frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} =

A

loga\log a

B

log2\log 2

C

a

D

log x

Answer

loga\log a

Explanation

Solution

limxπ/2(acotxacosxcotxcosx)=limxπ/2acosx(acotxcosx1cotxcosx)\underset{x \rightarrow \pi/2}{\text{lim}}{}\left( \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \right) = \underset{x \rightarrow \pi/2}{\text{lim}}a^{\cos x}\left( \frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \right)

=acos(π/2)limxπ/2(acotxcosx1cotxcosx)=1loga=loga= a^{\cos(\pi/2)}\underset{x \rightarrow \pi/2}{\text{lim}}\left( \frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \right) = 1\log a = \log a.