Solveeit Logo

Question

Question: \(\lim_{x \rightarrow \infty}\frac{(x + 1)^{10} + (x + 2)^{10} + ..... + (x + 100)^{10}}{x^{10} + 10...

limx(x+1)10+(x+2)10+.....+(x+100)10x10+1010\lim_{x \rightarrow \infty}\frac{(x + 1)^{10} + (x + 2)^{10} + ..... + (x + 100)^{10}}{x^{10} + 10^{10}}is equal to

A

0

B

1

C

10

D

100

Answer

100

Explanation

Solution

limx(x+1)10+(x+2)10++(x+100)10x10+1010\lim _ { x \rightarrow \infty } \frac { ( x + 1 ) ^ { 10 } + ( x + 2 ) ^ { 10 } + \ldots \ldots + ( x + 100 ) ^ { 10 } } { x ^ { 10 } + 10 ^ { 10 } }

=limxx10[(1+1x)10+(1+2x)10+...+(1+100x)10]x10[1+1010x10]=100= \lim_{x \rightarrow \infty}\frac{x^{10}\left\lbrack \left( 1 + \frac{1}{x} \right)^{10} + \left( 1 + \frac{2}{x} \right)^{10} + ... + \left( 1 + \frac{100}{x} \right)^{10} \right\rbrack}{x^{10}\left\lbrack 1 + \frac{10^{10}}{x^{10}} \right\rbrack} = 100.