Solveeit Logo

Question

Question: \(\lim_{x \rightarrow \frac{\pi}{2}}\frac{\left\lbrack 1 - \tan\left( \frac{x}{2} \right) \right\rbr...

limxπ2[1tan(x2)][1sinx][1+tan(x2)][π2x]3\lim_{x \rightarrow \frac{\pi}{2}}\frac{\left\lbrack 1 - \tan\left( \frac{x}{2} \right) \right\rbrack\lbrack 1 - \sin x\rbrack}{\left\lbrack 1 + \tan\left( \frac{x}{2} \right) \right\rbrack\lbrack\pi - 2x\rbrack^{3}} is

A

18\frac{1}{8}

B

0

C

132\frac{1}{32}

D

\infty

Answer

132\frac{1}{32}

Explanation

Solution

limxπ2tan(π4x2)(1sinx)(π2x)3\lim_{x \rightarrow \frac{\pi}{2}}\frac{\tan\left( \frac{\pi}{4} - \frac{x}{2} \right)(1 - \sin x)}{(\pi - 2x)^{3}}

Let x=π2+y,then y0x = \frac{\pi}{2} + y,\text{then }y \rightarrow 0limy0tan(y2)(1cosy)(2y)3\lim_{y \rightarrow 0}\frac{\tan\left( \frac{- y}{2} \right)(1 - \cos y)}{( - 2y)^{3}}

= limy0tany2.2sin2y2(8)y3=limy0132tany2(y2).[siny2y2]2=132\lim_{y \rightarrow 0}\frac{- \tan\frac{y}{2}.2\sin^{2}\frac{y}{2}}{( - 8)y^{3}} = \lim_{y \rightarrow 0}\frac{1}{32}\frac{\tan\frac{y}{2}}{\left( \frac{y}{2} \right)}.\left\lbrack \frac{\sin\frac{y}{2}}{\frac{y}{2}} \right\rbrack^{2} = \frac{1}{32}.