Solveeit Logo

Question

Question: \[\lim_{x \rightarrow 2}\frac{|x - 2|}{x - 2} =\]...

limx2x2x2=\lim_{x \rightarrow 2}\frac{|x - 2|}{x - 2} =

A

1

B

–1

C

Does not exist

D

None of these

Answer

Does not exist

Explanation

Solution

L.H.L.=limx2x2x2=limh02h22h2\lim_{x \rightarrow 2^{-}}\frac{|x - 2|}{x - 2} = \lim_{h \rightarrow 0}\frac{|2 - h - 2|}{2 - h - 2}

= limh0hh=1\lim_{h \rightarrow 0}\frac{h}{- h} = - 1…..(i)

and, R.H.L.=limx2+x2x2=limh02+h22+h2\lim_{x \rightarrow 2^{+}}\frac{|x - 2|}{x - 2} = \lim_{h \rightarrow 0}\frac{|2 + h - 2|}{2 + h - 2} = limh0hh=1\lim_{h \rightarrow 0}\frac{h}{h} = 1…..(ii)

From (i) and (ii) L.H.L. ≠ R.H.L. i.e. limx2x2x2\lim_{x \rightarrow 2}\frac{|x - 2|}{x - 2} does not exist.