Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\)![](https://cdn.pureessence.tech/canvas_97.png?top_left_x=1756&top_left_y=...

limx0\lim_{x \rightarrow 0}0x2sint\int_{0}^{x^{2}}{\sin\sqrt{t}} dt is equal to –

A

13\frac{1}{3}

B

23\frac{2}{3}

C

13\frac{1}{3}

D

23\frac{2}{3}

Answer

23\frac{2}{3}

Explanation

Solution

limx0\lim _ { x \rightarrow 0 } 0x2sint\int _ { 0 } ^ { \mathrm { x } ^ { 2 } } \sin \sqrt { \mathrm { t } } dt

=limx0\lim _ { x \rightarrow 0 } 0x2sintdtx3\frac { \int _ { 0 } ^ { x ^ { 2 } } \sin \sqrt { t } d t } { x ^ { 3 } } (00\left( \frac { 0 } { 0 } \right. form )) (0x2sintdt=0\left( \because \int _ { 0 } ^ { \mathrm { x } ^ { 2 } } \sin \sqrt { \mathrm { t } } \mathrm { dt } = 0 \right. at x=0)\left. \mathrm { x } = 0 \right)

= limx0\lim _ { x \rightarrow 0 } . (1)

=limx0\lim _ { x \rightarrow 0 } = 23\frac { 2 } { 3 }

Hence (2) is the correct answer.