Solveeit Logo

Question

Question: \[\lim_{x \rightarrow 0}\frac{\tan x - \sin x}{x^{3}}\]...

limx0tanxsinxx3\lim_{x \rightarrow 0}\frac{\tan x - \sin x}{x^{3}}

A

12\frac{1}{2}

B

12- \frac{1}{2}

C

23\frac{2}{3}

D

None of these

Answer

12\frac{1}{2}

Explanation

Solution

limx0tanxsinxx3=limx0sinxsinxcosxx3cosx\lim_{x \rightarrow 0}\frac{\tan x - \sin x}{x^{3}} = \lim_{x \rightarrow 0}\frac{\sin x - \sin x\cos x}{x^{3}\cos x}

=limx0sinx(2sin2x2)x3cosx= \lim_{x \rightarrow 0}\frac{\sin x\left( 2\sin^{2}\frac{x}{2} \right)}{x^{3}\cos x} =limx0[sinxx.2cosx.sin2x2(x2)2.14]=12= \lim_{x \rightarrow 0}\left\lbrack \frac{\sin x}{x}.\frac{2}{\cos x}.\frac{\sin^{2}\frac{x}{2}}{\left( \frac{x}{2} \right)^{2}}.\frac{1}{4} \right\rbrack = \frac{1}{2}