Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\frac{\sin\left( \pi\cos^{2}x \right)}{x^{2}}\) =...

limx0sin(πcos2x)x2\lim_{x \rightarrow 0}\frac{\sin\left( \pi\cos^{2}x \right)}{x^{2}} =

A

−π

B

π

C

π/2

D

1

Answer

π

Explanation

Solution

limx0sin(πcos2x)x2\lim_{x \rightarrow 0}\frac{\sin\left( \pi\cos^{2}x \right)}{x^{2}}= limx0sin(ππsin2x)x2\lim_{x \rightarrow 0}\frac{\sin\left( \pi - \pi\sin^{2}x \right)}{x^{2}}

[sin(πθ=sinθ)]\left\lbrack \sin\left( \pi - \theta = \sin\theta \right) \right\rbrack

= limx0sin(πsin2x)πsin2x\lim_{x \rightarrow 0}\frac{\sin\left( \pi\sin^{2}x \right)}{\pi\sin^{2}x}× (πsin2x)x2\frac{\left( \pi\sin^{2}x \right)}{x^{2}}= π