Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\frac{\sin x + \log(1 - x)}{x^{2}}\) is equal to...

limx0sinx+log(1x)x2\lim_{x \rightarrow 0}\frac{\sin x + \log(1 - x)}{x^{2}} is equal to

A

0

B

12\frac{1}{2}

C

12- \frac{1}{2}

D

None of these

Answer

12- \frac{1}{2}

Explanation

Solution

Apply L- Hospital rule, we get,

limx0cosx11x2x=limx0sinx1(1x)22=12\lim_{x \rightarrow 0}\frac{\cos x - \frac{1}{1 - x}}{2x} = \lim_{x \rightarrow 0}\frac{- \sin x - \frac{1}{(1 - x)^{2}}}{2} = - \frac{1}{2}

Alternative method : limx0sinx+log(1x)x2\lim_{x \rightarrow 0}\frac{\sin x + \log(1 - x)}{x^{2}}

=limx0(xx33!+x55!)x2+limx0(xx22x33x44)x2= \lim _ { x \rightarrow 0 } \frac { \left( x - \frac { x ^ { 3 } } { 3 ! } + \frac { x ^ { 5 } } { 5 ! } - \ldots \ldots \right) } { x ^ { 2 } } + \lim _ { x \rightarrow 0 } \frac { \left( - x - \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 3 } } { 3 } - \frac { x ^ { 4 } } { 4 } - \ldots \ldots \right) } { x ^ { 2 } } (sinx=xx33!+x55!......and log(1x)=xx22x33........)\left( \because\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - ......\text{and log}(1 - x) = - x - \frac{x^{2}}{2} - \frac{x^{3}}{3}........ \right)Hence, limx0x22x3(13!+13)x44....x2=12.\lim_{x \rightarrow 0}\frac{\frac{- x^{2}}{2} - x^{3}\left( \frac{1}{3!} + \frac{1}{3} \right) - \frac{x^{4}}{4}....}{x^{2}} = - \frac{1}{2}.