Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\frac{\sin^{- 1}x - \tan^{- 1}x}{x^{3}}\) is equal to...

limx0sin1xtan1xx3\lim_{x \rightarrow 0}\frac{\sin^{- 1}x - \tan^{- 1}x}{x^{3}} is equal to

A

0

B

1

C

– 1

D

12\frac{1}{2}

Answer

12\frac{1}{2}

Explanation

Solution

limx0sin1xtan1xx3\lim_{x \rightarrow 0}\frac{\sin^{- 1}x - \tan^{- 1}x}{x^{3}} (00form)\left( \frac{0}{0}\text{form} \right)

Applying L-Hospital’s rule,

=limx011x211+x23x2= \lim_{x \rightarrow 0}\frac{\frac{1}{\sqrt{1 - x^{2}}} - \frac{1}{1 + x^{2}}}{3x^{2}} (00form)\left( \frac{0}{0}\text{form} \right)

=limx012×2x(1x2)3/2+2x(1+x2)26x=limx016[1(1x2)3/2+2(1+x2)2]=12= \lim_{x \rightarrow 0}\frac{\frac{- 1}{2} \times \frac{- 2x}{(1 - x^{2})^{3/2}} + \frac{2x}{(1 + x^{2})^{2}}}{6x} = \lim_{x \rightarrow 0}\frac{1}{6}\left\lbrack \frac{1}{(1 - x^{2})^{3/2}} + \frac{2}{(1 + x^{2})^{2}} \right\rbrack = \frac{1}{2}.