Question
Question: \(\lim_{x \rightarrow 0}\frac{\int_{0}^{x^{2}}{(\tan^{- 1}t)^{2}dt}}{\int_{0}^{x^{4}}{\sin\sqrt{t}dt...
limx→0∫0x4sintdt∫0x2(tan−1t)2dtis equal to -
A
1
B
–1
C
–1/2
D
½
Answer
½
Explanation
Solution
limx→0∫0x4sintdt∫0x2(tan−1t)2dt (00form)
=limx→0 [sint]t=x4.dxd(x4)[(tan−1t)2]t=x2.dxd(x2)
[Using L¢ Hospital's Rule]
= limx→0 sinx2.4x3(tan−1x2)2.2x
= 21 limx→0 (x2sinx2)(x2tan−1x2)2=21.
Hence (4) is the correct answer.