Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\frac{\int_{0}^{x^{2}}{(\tan^{- 1}t)^{2}dt}}{\int_{0}^{x^{4}}{\sin\sqrt{t}dt...

limx00x2(tan1t)2dt0x4sintdt\lim_{x \rightarrow 0}\frac{\int_{0}^{x^{2}}{(\tan^{- 1}t)^{2}dt}}{\int_{0}^{x^{4}}{\sin\sqrt{t}dt}}is equal to -

A

1

B

–1

C

–1/2

D

½

Answer

½

Explanation

Solution

limx00x2(tan1t)2dt0x4sintdt\lim_{x \rightarrow 0}\frac{\int_{0}^{x^{2}}{(\tan^{- 1}t)^{2}dt}}{\int_{0}^{x^{4}}{\sin\sqrt{t}dt}} (00form)\left( \frac{0}{0}form \right)

=limx0\lim _ { x \rightarrow 0 } [(tan1t)2]t=x2.ddx(x2)[sint]t=x4.ddx(x4)\frac{\lbrack(\tan^{- 1}t)^{2}\rbrack_{t = x^{2}}.\frac{d}{dx}(x^{2})}{\lbrack\sin\sqrt{t}\rbrack_{t = x^{4}}.\frac{d}{dx}(x^{4})}

[Using L¢ Hospital's Rule]

= limx0\lim _ { x \rightarrow 0 } (tan1x2)2.2xsinx2.4x3\frac{(\tan^{- 1}x^{2})^{2}.2x}{\sin x^{2}.4x^{3}}

= 12\frac{1}{2} limx0\lim _ { x \rightarrow 0 } (tan1x2x2)2(sinx2x2)=12\frac{\left( \frac{\tan^{- 1}x^{2}}{x^{2}} \right)^{2}}{\left( \frac{\sin x^{2}}{x^{2}} \right)} = \frac{1}{2}.

Hence (4) is the correct answer.