Solveeit Logo

Question

Question: \[\lim_{x \rightarrow 0}\frac{e^{\alpha x} - e^{\beta x}}{x} =\]...

limx0eαxeβxx=\lim_{x \rightarrow 0}\frac{e^{\alpha x} - e^{\beta x}}{x} =

A

α+β\alpha + \beta

B

1α+β\frac{1}{\alpha} + \beta

C

α2β2\alpha^{2} - \beta^{2}

D

αβ\alpha - \beta

Answer

αβ\alpha - \beta

Explanation

Solution

limx0eαxeβxx=limx0(eαx1)(eβx1)x\lim_{x \rightarrow 0}\frac{e^{\alpha x} - e^{\beta x}}{x} = \lim_{x \rightarrow 0}\frac{(e^{\alpha x} - 1) - (e^{\beta x} - 1)}{x}

=limx0eαx1xlimx0eβx1x\lim_{x \rightarrow 0}\frac{e^{\alpha x} - 1}{x} - \lim_{x \rightarrow 0}\frac{e^{\beta x} - 1}{x} = αβ\alpha - \beta.