Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\frac{a^{x} - 1}{\sqrt{1 + x} - 1}\) is equal to...

limx0ax11+x1\lim_{x \rightarrow 0}\frac{a^{x} - 1}{\sqrt{1 + x} - 1} is equal to

A

2logea2\log_{e}a

B

12logea\frac{1}{2}\log_{e}a

C

aloge2a\log_{e}2

D

None of these

Answer

2logea2\log_{e}a

Explanation

Solution

limx0ax11+x1=limx0ax11+x1.1+x+11+x+1\lim_{x \rightarrow 0}\frac{a^{x} - 1}{\sqrt{1 + x} - 1} = \lim_{x \rightarrow 0}\frac{a^{x} - 1}{\sqrt{1 + x} - 1}.\frac{\sqrt{1 + x} + 1}{\sqrt{1 + x} + 1}

= limx0(ax1)(1+x+1)1+x1\lim_{x \rightarrow 0}\frac{(a^{x} - 1)\left( \sqrt{1 + x} + 1 \right)}{1 + x - 1} = limx0(ax1x).(1+x+1)\lim_{x \rightarrow 0}\left( \frac{a^{x} - 1}{x} \right).\left( \sqrt{1 + x} + 1 \right)

= (limx0ax1x).(limx0(1+x+1))\left( \lim_{x \rightarrow 0}\frac{a^{x} - 1}{x} \right).\left( \lim_{x \rightarrow 0}\left( \sqrt{1 + x} + 1 \right) \right) = (logea).(2)(\log_{e}a).(2) =2logea2\log_{e}a.