Solveeit Logo

Question

Question: \[\lim_{x \rightarrow 0}\frac{4^{x} - 9^{x}}{x(4^{x} + 9^{x})} =\]...

limx04x9xx(4x+9x)=\lim_{x \rightarrow 0}\frac{4^{x} - 9^{x}}{x(4^{x} + 9^{x})} =

A

log(23)\log\left( \frac{2}{3} \right)

B

12log(32)\frac{1}{2}\log\left( \frac{3}{2} \right)

C

12log(32)\frac{1}{2}\log\left( \frac{3}{2} \right)

D

log(32)\log\left( \frac{3}{2} \right)

Answer

log(23)\log\left( \frac{2}{3} \right)

Explanation

Solution

y=limx04x9xx(4x+9x)y = \lim _ { x \rightarrow 0 } \frac { 4 ^ { x } - 9 ^ { x } } { x \left( 4 ^ { x } + 9 ^ { x } \right) } (00form)\left( \frac{0}{0}\text{form} \right)

Using L-Hospital’s rule,

y=limx04xlog49xlog9(4x+9x)+x(4xlog4+9xlog9)y = \lim_{x \rightarrow 0}\frac{4^{x}\log 4 - 9^{x}\log 9}{(4^{x} + 9^{x}) + x(4^{x}\log 4 + 9^{x}\log 9)}y=log4log92y = \frac{\log 4 - \log 9}{2}y=log(23)22=log23y = \frac{{\log\left( \frac{2}{3} \right)}^{2}}{2} = \log\frac{2}{3}.