Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\frac{(2^{\sin x} - 1)\lbrack\mathcal{l}n(1 + \sin 2x)\rbrack}{x\tan^{- 1}x}...

limx0(2sinx1)[ln(1+sin2x)]xtan1x\lim_{x \rightarrow 0}\frac{(2^{\sin x} - 1)\lbrack\mathcal{l}n(1 + \sin 2x)\rbrack}{x\tan^{- 1}x} is equal to

A

ln 2

B

2 ln 2

C

(ln 2)2

D

0

Answer

2 ln 2

Explanation

Solution

limx0(2sinx1)[ln(1+sin2x)]x2tan1xx\lim_{x \rightarrow 0}\frac{(2^{\sin x} - 1)\lbrack\mathcal{l}n(1 + \sin 2x)\rbrack}{x^{2}\frac{\tan^{- 1}x}{x}}

= limx02sinx1sinx\lim_{x \rightarrow 0}\frac{2^{\sin x} - 1}{\sin x}×sinxx\frac{\sin x}{x}× ln(1+sin2x)sin2x\frac{\mathcal{l}n(1 + \sin 2x)}{\sin 2x}× sin2x2x\frac{\sin 2x}{2x} × 2 = 2ln2