Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\frac{1}{x^{5}}\int_{0}^{x}e^{- t^{2}}\) dt – \(\frac{1}{x^{4}} + \frac{1}{3...

limx01x50xet2\lim_{x \rightarrow 0}\frac{1}{x^{5}}\int_{0}^{x}e^{- t^{2}} dt – 1x4+13x2\frac{1}{x^{4}} + \frac{1}{3x^{2}} is equal to

A

1

B

3/5

C

½

D

3/10

Answer

3/10

Explanation

Solution

Applying L'Hospital Rule

30xet2dt3x+x3x5\frac{3\int_{0}^{x}e^{- t^{2}}dt - 3x + x^{3}}{x^{5}} (00)\left( \frac{0}{0} \right)

limx0\lim _ { x \rightarrow 0 } 3ex23+3x25x4\frac{3e^{- x^{2}} - 3 + 3x^{2}}{5x^{4}}

= 35\frac{3}{5} limx0\lim_{x \rightarrow 0} ex21+x2x4\frac{e^{- x^{2}} - 1 + x^{2}}{x^{4}} (00)\left( \frac{0}{0} \right)

= 35\frac{3}{5} limx0\lim_{x \rightarrow 0} ex2(2x)0+2x4x3\frac{e^{- x^{2}}( - 2x) - 0 + 2x}{4x^{3}}

= 3524\frac { 3 } { 5 } \cdot \frac { 2 } { 4 } limx0\lim_{x \rightarrow 0} ex2+1x2\frac{- e^{- x^{2}} + 1}{x^{2}} (00)\left( \frac{0}{0} \right)

= 35×24\frac { 3 } { 5 } \times \frac { 2 } { 4 } limx0\lim_{x \rightarrow 0} 1ex2(x2)\frac{1 - e^{- x^{2}}}{( - x^{2})} = 310\frac{3}{10}