Question
Question: \(\lim_{x \rightarrow 0}\frac{1}{x^{5}}\int_{0}^{x}e^{- t^{2}}\) dt – \(\frac{1}{x^{4}} + \frac{1}{3...
limx→0x51∫0xe−t2 dt – x41+3x21 is equal to
A
1
B
3/5
C
½
D
3/10
Answer
3/10
Explanation
Solution
Applying L'Hospital Rule
x53∫0xe−t2dt−3x+x3 (00)
limx→0 5x43e−x2−3+3x2
= 53 limx→0 x4e−x2−1+x2 (00)
= 53 limx→0 4x3e−x2(−2x)−0+2x
= 53⋅42 limx→0 x2−e−x2+1 (00)
= 53×42 limx→0 (−x2)1−e−x2 = 103