Question
Question: \(\lim_{x \rightarrow 0}\) \|x\| <sup>sin x</sup> =...
limx→0 |x| sin x =
A
0
B
Does not exist
C
1
D
None of these
Answer
1
Explanation
Solution
Let y = limx→0|x|sinx 00 form
log y =limx→0sin x log |x| 0 × a
log y = limx→0 cosecxlog∣x∣ αα
Apply L' Hospital rule
log y = limx→0 cosec x cot x1/x
log y = limx→0– (xsinx) tan x
log y = 0
y = 1