Solveeit Logo

Question

Question: \(\lim_{x \rightarrow 0}\) \|x\| <sup>sin x</sup> =...

limx0\lim_{x \rightarrow 0} |x| sin x =

A

0

B

Does not exist

C

1

D

None of these

Answer

1

Explanation

Solution

Let y = limx0\lim_{x \rightarrow 0}|x|sinx 00 form

log y =limx0\lim_{x \rightarrow 0}sin x log |x| 0 × a

log y = limx0\lim_{x \rightarrow 0} logxcosecx\frac { \log | x | } { \operatorname { cosec } x } αα\frac{\alpha}{\alpha}

Apply L' Hospital rule

log y = limx0\lim _ { x \rightarrow 0 } 1/xcosec x cot x\frac{1/x}{\text{cosec x cot x}}

log y = limx0\lim_{x \rightarrow 0}(sinxx)\left( \frac{\sin x}{x} \right) tan x

log y = 0

y = 1