Question
Question: \lim_{n\to+\infty} n^2 \int_{0}^{\frac{1}{n}} \frac{e^x-1}{1+n^4x^4}dx...
\lim_{n\to+\infty} n^2 \int_{0}^{\frac{1}{n}} \frac{e^x-1}{1+n^4x^4}dx

Answer
\frac{\pi}{8}
Explanation
Solution
Let x=u/n, so dx=du/n. The integral becomes: L=limn→+∞n2∫011+n4(u/n)4eu/n−1ndu=limn→+∞n∫011+u4eu/n−1du. Using the Taylor expansion ez−1=z+O(z2), we have eu/n−1=u/n+O(1/n2). So, L=limn→+∞n∫011+u4u/n+O(1/n2)du=limn→+∞∫011+u4udu+limn→+∞∫011+u4O(1/n)du. The second term goes to 0 as n→∞. The first term is ∫011+u4udu. Let v=u2, dv=2udu. ∫011+v212dv=21[arctan(v)]01=21(arctan(1)−arctan(0))=21(4π−0)=8π. Thus, L=8π.
