Solveeit Logo

Question

Question: \lim_{n\to+\infty} n^2 \int_{0}^{\frac{1}{n}} \frac{e^x-1}{1+n^4x^4}dx...

\lim_{n\to+\infty} n^2 \int_{0}^{\frac{1}{n}} \frac{e^x-1}{1+n^4x^4}dx

Answer

\frac{\pi}{8}

Explanation

Solution

Let x=u/nx = u/n, so dx=du/ndx = du/n. The integral becomes: L=limn+n201eu/n11+n4(u/n)4dun=limn+n01eu/n11+u4duL = \lim_{n\to+\infty} n^2 \int_{0}^{1} \frac{e^{u/n}-1}{1+n^4(u/n)^4} \frac{du}{n} = \lim_{n\to+\infty} n \int_{0}^{1} \frac{e^{u/n}-1}{1+u^4} du. Using the Taylor expansion ez1=z+O(z2)e^z - 1 = z + O(z^2), we have eu/n1=u/n+O(1/n2)e^{u/n}-1 = u/n + O(1/n^2). So, L=limn+n01u/n+O(1/n2)1+u4du=limn+01u1+u4du+limn+01O(1/n)1+u4duL = \lim_{n\to+\infty} n \int_{0}^{1} \frac{u/n + O(1/n^2)}{1+u^4} du = \lim_{n\to+\infty} \int_{0}^{1} \frac{u}{1+u^4} du + \lim_{n\to+\infty} \int_{0}^{1} \frac{O(1/n)}{1+u^4} du. The second term goes to 0 as nn \to \infty. The first term is 01u1+u4du\int_{0}^{1} \frac{u}{1+u^4} du. Let v=u2v = u^2, dv=2ududv = 2u\,du. 0111+v2dv2=12[arctan(v)]01=12(arctan(1)arctan(0))=12(π40)=π8\int_{0}^{1} \frac{1}{1+v^2} \frac{dv}{2} = \frac{1}{2} [\arctan(v)]_{0}^{1} = \frac{1}{2} (\arctan(1) - \arctan(0)) = \frac{1}{2} (\frac{\pi}{4} - 0) = \frac{\pi}{8}. Thus, L=π8L = \frac{\pi}{8}.