Question
Question: $\lim_{n\to\infty} \ln\prod_{K=1}^{n} \tan^{-1}(\frac{1}{1+K+K^2})$...
limn→∞ln∏K=1ntan−1(1+K+K21)

-\infty
Solution
Let the given limit be L. L=limn→∞ln∏K=1ntan−1(1+K+K21) This can be rewritten as a sum: L=limn→∞∑K=1nln(tan−1(1+K+K21)) Let aK=tan−1(1+K+K21). We use the identity tan−1x−tan−1y=tan−11+xyx−y. Let x=K+1 and y=K. Then x−y=(K+1)−K=1 and xy=K(K+1)=K2+K. So, aK=tan−1(K+1)−tan−1K.
Now, we analyze the behavior of aK for large K. Using the Taylor expansion of tan−1x for large x, we have tan−1x=2π−x1+3x31−O(x51). So, for large K: aK=(2π−K+11+3(K+1)31−…)−(2π−K1+3K31−…) aK=(K1−K+11)−31(K31−(K+1)31)+… aK=K(K+1)1−31K3(K+1)3(K+1)3−K3+… aK=K2+K1−31K3(K+1)33K2+3K+1+… For large K, the dominant term is K2+K1=K2(1+1/K)1=K21(1−K1+O(K21))=K21−K31+O(K41). So, aK=K21−K31+O(K41).
Now consider the logarithm of aK: ln(aK)=ln(K21−K31+O(K41)) ln(aK)=ln(K21(1−K1+O(K21))) ln(aK)=ln(K−2)+ln(1−K1+O(K21)) Using the Taylor expansion ln(1+u)=u−2u2+O(u3) for small u, with u=−K1+O(K21): ln(aK)=−2lnK+(−K1+O(K21))−21(−K1+O(K21))2+O((−K1)3) ln(aK)=−2lnK−K1+O(K21).
Now we sum ln(aK) from K=1 to n: ∑K=1nln(aK)=∑K=1n(−2lnK−K1+O(K21)) =−2∑K=1nlnK−∑K=1nK1+∑K=1nO(K21)
We know that ∑K=1nlnK=ln(n!) and ∑K=1nK1=Hn (the n-th harmonic number). The sum ∑K=1nO(K21) converges to a finite constant as n→∞ because ∑K21 converges. Let this sum be Cn, which tends to a constant C as n→∞. So, ∑K=1nln(aK)=−2ln(n!)−Hn+Cn.
We need to find the limit of this expression as n→∞. Using Stirling's approximation for ln(n!): ln(n!)≈nlnn−n for large n. Using the approximation for Hn: Hn≈lnn+γ for large n, where γ is the Euler-Mascheroni constant.
Substituting these into the sum: limn→∞∑K=1nln(aK)=limn→∞(−2ln(n!)−Hn+Cn) ≈limn→∞(−2(nlnn−n)−(lnn+γ)+C) =limn→∞(−2nlnn+2n−lnn−γ+C)
The dominant term in this expression is −2nlnn. As n→∞, −2nlnn→−∞. Therefore, the limit of the sum is −∞. L=limn→∞∑K=1nln(aK)=−∞
The question asks for the limit of the logarithm of the product, which is exactly this sum.