Solveeit Logo

Question

Question: $\lim_{n\to\infty} \ln\prod_{K=1}^{n} \tan^{-1}(\frac{1}{1+K+K^2})$...

limnlnK=1ntan1(11+K+K2)\lim_{n\to\infty} \ln\prod_{K=1}^{n} \tan^{-1}(\frac{1}{1+K+K^2})

Answer

-\infty

Explanation

Solution

Let the given limit be LL. L=limnlnK=1ntan1(11+K+K2)L = \lim_{n\to\infty} \ln\prod_{K=1}^{n} \tan^{-1}\left(\frac{1}{1+K+K^2}\right) This can be rewritten as a sum: L=limnK=1nln(tan1(11+K+K2))L = \lim_{n\to\infty} \sum_{K=1}^{n} \ln\left(\tan^{-1}\left(\frac{1}{1+K+K^2}\right)\right) Let aK=tan1(11+K+K2)a_K = \tan^{-1}\left(\frac{1}{1+K+K^2}\right). We use the identity tan1xtan1y=tan1xy1+xy\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}. Let x=K+1x = K+1 and y=Ky = K. Then xy=(K+1)K=1x-y = (K+1)-K = 1 and xy=K(K+1)=K2+Kxy = K(K+1) = K^2+K. So, aK=tan1(K+1)tan1Ka_K = \tan^{-1}(K+1) - \tan^{-1} K.

Now, we analyze the behavior of aKa_K for large KK. Using the Taylor expansion of tan1x\tan^{-1} x for large xx, we have tan1x=π21x+13x3O(1x5)\tan^{-1} x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - O(\frac{1}{x^5}). So, for large KK: aK=(π21K+1+13(K+1)3)(π21K+13K3)a_K = \left(\frac{\pi}{2} - \frac{1}{K+1} + \frac{1}{3(K+1)^3} - \dots\right) - \left(\frac{\pi}{2} - \frac{1}{K} + \frac{1}{3K^3} - \dots\right) aK=(1K1K+1)13(1K31(K+1)3)+a_K = \left(\frac{1}{K} - \frac{1}{K+1}\right) - \frac{1}{3}\left(\frac{1}{K^3} - \frac{1}{(K+1)^3}\right) + \dots aK=1K(K+1)13(K+1)3K3K3(K+1)3+a_K = \frac{1}{K(K+1)} - \frac{1}{3} \frac{(K+1)^3 - K^3}{K^3(K+1)^3} + \dots aK=1K2+K133K2+3K+1K3(K+1)3+a_K = \frac{1}{K^2+K} - \frac{1}{3} \frac{3K^2+3K+1}{K^3(K+1)^3} + \dots For large KK, the dominant term is 1K2+K=1K2(1+1/K)=1K2(11K+O(1K2))=1K21K3+O(1K4)\frac{1}{K^2+K} = \frac{1}{K^2(1+1/K)} = \frac{1}{K^2}(1 - \frac{1}{K} + O(\frac{1}{K^2})) = \frac{1}{K^2} - \frac{1}{K^3} + O(\frac{1}{K^4}). So, aK=1K21K3+O(1K4)a_K = \frac{1}{K^2} - \frac{1}{K^3} + O(\frac{1}{K^4}).

Now consider the logarithm of aKa_K: ln(aK)=ln(1K21K3+O(1K4))\ln(a_K) = \ln\left(\frac{1}{K^2} - \frac{1}{K^3} + O(\frac{1}{K^4})\right) ln(aK)=ln(1K2(11K+O(1K2)))\ln(a_K) = \ln\left(\frac{1}{K^2}\left(1 - \frac{1}{K} + O(\frac{1}{K^2})\right)\right) ln(aK)=ln(K2)+ln(11K+O(1K2))\ln(a_K) = \ln(K^{-2}) + \ln\left(1 - \frac{1}{K} + O(\frac{1}{K^2})\right) Using the Taylor expansion ln(1+u)=uu22+O(u3)\ln(1+u) = u - \frac{u^2}{2} + O(u^3) for small uu, with u=1K+O(1K2)u = -\frac{1}{K} + O(\frac{1}{K^2}): ln(aK)=2lnK+(1K+O(1K2))12(1K+O(1K2))2+O((1K)3)\ln(a_K) = -2 \ln K + \left(-\frac{1}{K} + O(\frac{1}{K^2})\right) - \frac{1}{2}\left(-\frac{1}{K} + O(\frac{1}{K^2})\right)^2 + O\left(\left(-\frac{1}{K}\right)^3\right) ln(aK)=2lnK1K+O(1K2)\ln(a_K) = -2 \ln K - \frac{1}{K} + O(\frac{1}{K^2}).

Now we sum ln(aK)\ln(a_K) from K=1K=1 to nn: K=1nln(aK)=K=1n(2lnK1K+O(1K2))\sum_{K=1}^{n} \ln(a_K) = \sum_{K=1}^{n} \left(-2 \ln K - \frac{1}{K} + O(\frac{1}{K^2})\right) =2K=1nlnKK=1n1K+K=1nO(1K2)= -2 \sum_{K=1}^{n} \ln K - \sum_{K=1}^{n} \frac{1}{K} + \sum_{K=1}^{n} O(\frac{1}{K^2})

We know that K=1nlnK=ln(n!)\sum_{K=1}^{n} \ln K = \ln(n!) and K=1n1K=Hn\sum_{K=1}^{n} \frac{1}{K} = H_n (the nn-th harmonic number). The sum K=1nO(1K2)\sum_{K=1}^{n} O(\frac{1}{K^2}) converges to a finite constant as nn \to \infty because 1K2\sum \frac{1}{K^2} converges. Let this sum be CnC_n, which tends to a constant CC as nn \to \infty. So, K=1nln(aK)=2ln(n!)Hn+Cn\sum_{K=1}^{n} \ln(a_K) = -2 \ln(n!) - H_n + C_n.

We need to find the limit of this expression as nn \to \infty. Using Stirling's approximation for ln(n!)\ln(n!): ln(n!)nlnnn\ln(n!) \approx n \ln n - n for large nn. Using the approximation for HnH_n: Hnlnn+γH_n \approx \ln n + \gamma for large nn, where γ\gamma is the Euler-Mascheroni constant.

Substituting these into the sum: limnK=1nln(aK)=limn(2ln(n!)Hn+Cn)\lim_{n\to\infty} \sum_{K=1}^{n} \ln(a_K) = \lim_{n\to\infty} (-2 \ln(n!) - H_n + C_n) limn(2(nlnnn)(lnn+γ)+C)\approx \lim_{n\to\infty} (-2(n \ln n - n) - (\ln n + \gamma) + C) =limn(2nlnn+2nlnnγ+C)= \lim_{n\to\infty} (-2n \ln n + 2n - \ln n - \gamma + C)

The dominant term in this expression is 2nlnn-2n \ln n. As nn \to \infty, 2nlnn-2n \ln n \to -\infty. Therefore, the limit of the sum is -\infty. L=limnK=1nln(aK)=L = \lim_{n\to\infty} \sum_{K=1}^{n} \ln(a_K) = -\infty

The question asks for the limit of the logarithm of the product, which is exactly this sum.