Solveeit Logo

Question

Question: $\lim_{n\to\infty} \frac{e^n}{(1+\frac{1}{n})^{n^2}}$...

limnen(1+1n)n2\lim_{n\to\infty} \frac{e^n}{(1+\frac{1}{n})^{n^2}}

Answer

e\sqrt{e}

Explanation

Solution

To evaluate the limit limnen(1+1n)n2\lim_{n\to\infty} \frac{e^n}{(1+\frac{1}{n})^{n^2}}, we can first take the natural logarithm of the expression.

Let L=limnen(1+1n)n2L = \lim_{n\to\infty} \frac{e^n}{(1+\frac{1}{n})^{n^2}}.
Consider lnL\ln L:

lnL=limnln(en(1+1n)n2)\ln L = \lim_{n\to\infty} \ln \left( \frac{e^n}{(1+\frac{1}{n})^{n^2}} \right)

Using logarithm properties, ln(a/b)=lnalnb\ln(a/b) = \ln a - \ln b and ln(xy)=ylnx\ln(x^y) = y \ln x:

lnL=limn[ln(en)ln((1+1n)n2)]\ln L = \lim_{n\to\infty} \left[ \ln(e^n) - \ln\left((1+\frac{1}{n})^{n^2}\right) \right] lnL=limn[nn2ln(1+1n)]\ln L = \lim_{n\to\infty} \left[ n - n^2 \ln\left(1+\frac{1}{n}\right) \right]

This limit is of the indeterminate form \infty - \infty. To evaluate it, let x=1nx = \frac{1}{n}. As nn \to \infty, x0x \to 0. Substituting xx into the expression:

lnL=limx0[1x1x2ln(1+x)]\ln L = \lim_{x\to 0} \left[ \frac{1}{x} - \frac{1}{x^2} \ln(1+x) \right]

Combine the terms into a single fraction:

lnL=limx0xln(1+x)x2\ln L = \lim_{x\to 0} \frac{x - \ln(1+x)}{x^2}

This limit is now of the indeterminate form 00\frac{0}{0}. We can evaluate it using either L'Hopital's Rule or Taylor series expansion for ln(1+x)\ln(1+x).

Method 1: Using Taylor Series Expansion

The Taylor series expansion for ln(1+x)\ln(1+x) around x=0x=0 is:

ln(1+x)=xx22+x33x44+\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots

Substitute this into the expression for lnL\ln L:

lnL=limx0x(xx22+x33O(x4))x2\ln L = \lim_{x\to 0} \frac{x - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - O(x^4)\right)}{x^2} lnL=limx0x22x33+O(x4)x2\ln L = \lim_{x\to 0} \frac{\frac{x^2}{2} - \frac{x^3}{3} + O(x^4)}{x^2}

Divide each term in the numerator by x2x^2:

lnL=limx0(12x3+O(x2))\ln L = \lim_{x\to 0} \left( \frac{1}{2} - \frac{x}{3} + O(x^2) \right)

As x0x \to 0, all terms containing xx go to zero:

lnL=12\ln L = \frac{1}{2}

Method 2: Using L'Hopital's Rule

Since the limit is of the form 00\frac{0}{0}, we can apply L'Hopital's Rule by differentiating the numerator and the denominator with respect to xx:

lnL=limx0ddx(xln(1+x))ddx(x2)\ln L = \lim_{x\to 0} \frac{\frac{d}{dx}(x - \ln(1+x))}{\frac{d}{dx}(x^2)} lnL=limx0111+x2x\ln L = \lim_{x\to 0} \frac{1 - \frac{1}{1+x}}{2x}

Simplify the numerator:

lnL=limx0(1+x)11+x2x\ln L = \lim_{x\to 0} \frac{\frac{(1+x)-1}{1+x}}{2x} lnL=limx0x1+x2x\ln L = \lim_{x\to 0} \frac{\frac{x}{1+x}}{2x} lnL=limx0x2x(1+x)\ln L = \lim_{x\to 0} \frac{x}{2x(1+x)}

Cancel out xx (since x0x \ne 0 in the limit process):

lnL=limx012(1+x)\ln L = \lim_{x\to 0} \frac{1}{2(1+x)}

Substitute x=0x=0:

lnL=12(1+0)=12\ln L = \frac{1}{2(1+0)} = \frac{1}{2}

Both methods yield the same result for lnL\ln L. Since lnL=12\ln L = \frac{1}{2}, we can find LL:

L=e1/2=eL = e^{1/2} = \sqrt{e}