Solveeit Logo

Question

Question: $\lim_{n \to \infty} n \sin(2\pi e n!)$...

limnnsin(2πen!)\lim_{n \to \infty} n \sin(2\pi e n!)

Answer

2\pi

Explanation

Solution

  1. Express en!e n! as the sum of an integer InI_n and a remainder Rn=k=n+1n!k!R_n = \sum_{k=n+1}^{\infty} \frac{n!}{k!}.
  2. Use sin(2πen!)=sin(2πRn)\sin(2\pi e n!) = \sin(2\pi R_n) since InI_n is an integer.
  3. Bound RnR_n: 1n+1<Rn<1n\frac{1}{n+1} < R_n < \frac{1}{n} for n1n \ge 1, showing Rn0R_n \to 0 as nn \to \infty.
  4. Apply limx0sinxx=1\lim_{x\to 0} \frac{\sin x}{x} = 1 to sin(2πRn)\sin(2\pi R_n), reducing the limit to 2πlimnnRn2\pi \lim_{n \to \infty} n R_n.
  5. Bound nRnn R_n: nn+1<nRn<1\frac{n}{n+1} < n R_n < 1 for n1n \ge 1.
  6. By the Squeeze Theorem, limnnRn=1\lim_{n \to \infty} n R_n = 1.
  7. The final answer is 2π×1=2π2\pi \times 1 = 2\pi.