Solveeit Logo

Question

Question: $\lim_{n \to \infty} n! \left( \prod_{K=1}^{n} \tan^{-1} \frac{1}{1+K+K^2} \right) =$...

limnn!(K=1ntan111+K+K2)=\lim_{n \to \infty} n! \left( \prod_{K=1}^{n} \tan^{-1} \frac{1}{1+K+K^2} \right) =

Answer

0

Explanation

Solution

Let the given limit be LL. The expression is L=limnn!(K=1ntan111+K+K2)L = \lim_{n \to \infty} n! \left( \prod_{K=1}^{n} \tan^{-1} \frac{1}{1+K+K^2} \right)

Let the term inside the product be aK=tan111+K+K2a_K = \tan^{-1} \frac{1}{1+K+K^2}. We use the identity tan1xtan1y=tan1xy1+xy\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}. Let x=K+1x = K+1 and y=Ky = K. Then xy=(K+1)K=1x-y = (K+1) - K = 1 and xy=K(K+1)xy = K(K+1). So, tan1(K+1)tan1K=tan1(K+1)K1+(K+1)K=tan111+K+K2\tan^{-1}(K+1) - \tan^{-1} K = \tan^{-1} \frac{(K+1)-K}{1+(K+1)K} = \tan^{-1} \frac{1}{1+K+K^2}. Thus, aK=tan1(K+1)tan1Ka_K = \tan^{-1}(K+1) - \tan^{-1} K.

The product is Pn=K=1naK=K=1n(tan1(K+1)tan1K)P_n = \prod_{K=1}^{n} a_K = \prod_{K=1}^{n} (\tan^{-1}(K+1) - \tan^{-1} K). We need to evaluate the limit of n!Pnn! P_n as nn \to \infty. Consider the logarithm of the expression n!Pnn! P_n: ln(n!Pn)=ln(n!)+lnPn=ln(n!)+K=1nlnaK\ln(n! P_n) = \ln(n!) + \ln P_n = \ln(n!) + \sum_{K=1}^{n} \ln a_K.

For large KK, aK=tan1(K+1)tan1Ka_K = \tan^{-1}(K+1) - \tan^{-1} K is small. We can use the Taylor expansion of tan1x\tan^{-1} x for large xx: tan1x=π21x+13x315x5+\tan^{-1} x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \dots. aK=(π21K+1+13(K+1)3)(π21K+13K3)a_K = \left(\frac{\pi}{2} - \frac{1}{K+1} + \frac{1}{3(K+1)^3} - \dots \right) - \left(\frac{\pi}{2} - \frac{1}{K} + \frac{1}{3K^3} - \dots \right) aK=(1K1K+1)13(1K31(K+1)3)+a_K = \left(\frac{1}{K} - \frac{1}{K+1}\right) - \frac{1}{3}\left(\frac{1}{K^3} - \frac{1}{(K+1)^3}\right) + \dots aK=1K(K+1)133K2+3K+1K3(K+1)3+a_K = \frac{1}{K(K+1)} - \frac{1}{3} \frac{3K^2+3K+1}{K^3(K+1)^3} + \dots aK=1K2+K3K2+3K+13(K6+3K5+3K4+K3)+a_K = \frac{1}{K^2+K} - \frac{3K^2+3K+1}{3(K^6+3K^5+3K^4+K^3)} + \dots For large KK, aK=1K2(1+1/K)3K2(1+1/K+1/(3K2))3K6(1+3/K+3/K2+1/K3)+a_K = \frac{1}{K^2(1+1/K)} - \frac{3K^2(1+1/K+1/(3K^2))}{3K^6(1+3/K+3/K^2+1/K^3)} + \dots aK=1K2(11/K+O(1/K2))1K4(1+O(1/K))+a_K = \frac{1}{K^2}(1 - 1/K + O(1/K^2)) - \frac{1}{K^4}(1+O(1/K)) + \dots aK=1K21K3+O(1K4)a_K = \frac{1}{K^2} - \frac{1}{K^3} + O(\frac{1}{K^4}).

Now consider lnaK\ln a_K for large KK: lnaK=ln(1K21K3+O(1K4))=ln(1K2(11/K+O(1/K2)))\ln a_K = \ln \left( \frac{1}{K^2} - \frac{1}{K^3} + O(\frac{1}{K^4}) \right) = \ln \left( \frac{1}{K^2} (1 - 1/K + O(1/K^2)) \right) lnaK=ln(1/K2)+ln(11/K+O(1/K2))\ln a_K = \ln(1/K^2) + \ln(1 - 1/K + O(1/K^2)) lnaK=2lnK+(1/K+O(1/K2))12(1/K+O(1/K2))2+O((1/K)3)\ln a_K = -2 \ln K + (-1/K + O(1/K^2)) - \frac{1}{2}(-1/K + O(1/K^2))^2 + O((-1/K)^3) lnaK=2lnK1/K+O(1/K2)\ln a_K = -2 \ln K - 1/K + O(1/K^2).

Now sum lnaK\ln a_K from K=1K=1 to nn: K=1nlnaK=K=1n(2lnK1/K+O(1/K2))\sum_{K=1}^{n} \ln a_K = \sum_{K=1}^{n} (-2 \ln K - 1/K + O(1/K^2)) K=1nlnaK=2K=1nlnKK=1n1/K+K=1nO(1/K2)\sum_{K=1}^{n} \ln a_K = -2 \sum_{K=1}^{n} \ln K - \sum_{K=1}^{n} 1/K + \sum_{K=1}^{n} O(1/K^2) K=1nlnaK=2ln(n!)Hn+Cn\sum_{K=1}^{n} \ln a_K = -2 \ln(n!) - H_n + C_n, where Hn=K=1n1/KH_n = \sum_{K=1}^{n} 1/K is the nn-th harmonic number and Cn=K=1nO(1/K2)C_n = \sum_{K=1}^{n} O(1/K^2). As nn \to \infty, CnC_n converges to a constant C=K=1O(1/K2)C = \sum_{K=1}^{\infty} O(1/K^2).

Now substitute this back into the expression for ln(n!Pn)\ln(n! P_n): ln(n!Pn)=ln(n!)+(2ln(n!)Hn+Cn)=ln(n!)Hn+Cn\ln(n! P_n) = \ln(n!) + (-2 \ln(n!) - H_n + C_n) = -\ln(n!) - H_n + C_n.

As nn \to \infty, we use the asymptotic approximations: ln(n!)nlnnn\ln(n!) \approx n \ln n - n (by Stirling's formula) Hnlnn+γH_n \approx \ln n + \gamma, where γ\gamma is the Euler-Mascheroni constant. CnCC_n \to C.

So, limnln(n!Pn)=limn(ln(n!)Hn+Cn)\lim_{n \to \infty} \ln(n! P_n) = \lim_{n \to \infty} (-\ln(n!) - H_n + C_n) =limn((nlnnn+O(lnn))(lnn+γ+o(1))+C+o(1))= \lim_{n \to \infty} (-(n \ln n - n + O(\ln n)) - (\ln n + \gamma + o(1)) + C + o(1)) =limn(nlnn+nlnnγ+C+O(lnn))= \lim_{n \to \infty} (-n \ln n + n - \ln n - \gamma + C + O(\ln n)) The dominant term is nlnn-n \ln n, which tends to -\infty as nn \to \infty. limnln(n!Pn)=\lim_{n \to \infty} \ln(n! P_n) = -\infty.

Therefore, the limit of the original expression is: L=limnn!Pn=elimnln(n!Pn)=e=0L = \lim_{n \to \infty} n! P_n = e^{\lim_{n \to \infty} \ln(n! P_n)} = e^{-\infty} = 0.

The final answer is 0\boxed{0}.