Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\sum_{r = 1}^{n}{\frac{1}{n}e^{\frac{r}{n}}}\)is...

limnr=1n1nern\lim_{n \rightarrow \infty}\sum_{r = 1}^{n}{\frac{1}{n}e^{\frac{r}{n}}}is

A

e+1e + 1

B

e1e - 1

C

1e1 - e

D

ee

Answer

e1e - 1

Explanation

Solution

limnr=1n1nern=01exdx=[ex]01=e1\lim_{n \rightarrow \infty}\sum_{r = 1}^{n}{\frac{1}{n}e^{\frac{r}{n}} = \int_{0}^{1}{e^{x}dx = \lbrack e^{x}\rbrack_{0}^{1} = e - 1}}.