Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\sum_{k = 1}^{n}\frac{k}{n^{2} + k^{2}}\)is equals to...

limnk=1nkn2+k2\lim_{n \rightarrow \infty}\sum_{k = 1}^{n}\frac{k}{n^{2} + k^{2}}is equals to

A

12log2\frac{1}{2}\log 2

B

x=3π4x = \frac{3\pi}{4}

C

π/4\pi/4

D

π/2\pi/2

Answer

12log2\frac{1}{2}\log 2

Explanation

Solution

Let I=limnk=1nkn2+k2I = \lim_{n \rightarrow \infty}\sum_{k = 1}^{n}\frac{k}{n^{2} + k^{2}} =limnk=1n1n(kn)1+(kn)2= \lim_{n \rightarrow \infty}\sum_{k = 1}^{n}{}\frac{1}{n}\frac{\left( \frac{k}{n} \right)}{1 + \left( \frac{k}{n} \right)^{2}}

I=01x1+x2dxI = \int_{0}^{1}{\frac{x}{1 + x^{2}}dx} =12[log(1+x2)]01=12[log2]= \frac{1}{2}\lbrack\log(1 + x^{2})\rbrack_{0}^{1} = \frac{1}{2}\left\lbrack \log 2 \right\rbrack.