Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\left\lbrack \frac{n!}{n^{n}} \right\rbrack^{1/n}\)equals...

limn[n!nn]1/n\lim_{n \rightarrow \infty}\left\lbrack \frac{n!}{n^{n}} \right\rbrack^{1/n}equals

A

e

B

1/e1/e

C

π/4\pi/4

D

4/π4/\pi

Answer

1/e1/e

Explanation

Solution

Let P=limx(n!nn)1/nP = \lim_{x \rightarrow \infty}\left( \frac{n!}{n^{n}} \right)^{1/n}

=limn(1n.2n.3n.4n..........nn)1/n= \lim_{n \rightarrow \infty}\left( \frac{1}{n}.\frac{2}{n}.\frac{3}{n}.\frac{4}{n}..........\frac{n}{n} \right)^{1/n}

logP=1nlimn(log1n+log2n+......+lognn)\therefore\log{}P = \frac{1}{n}\lim_{n \rightarrow \infty}\left( \log\frac{1}{n} + \log\frac{2}{n} + ...... + \log\frac{n}{n} \right)

logP=limnr=1n1nlogrn\log{}P = \lim_{n \rightarrow \infty}\sum_{r = 1}^{n}{}\frac{1}{n}\log\frac{r}{n}

logP=01logxdx=(xlogxx)01=(1)\log{}P = \int_{0}^{1}{}\log xdx = (x\log x - x)_{0}^{1} = ( - 1)P=1eP = \frac{1}{e} .