Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{n} + \frac{1}{\sqrt{n^{2} + n}} + \frac{1}{\sqrt{...

limn[1n+1n2+n+1n2+2n+.....+1n2+(n1)n]\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{n} + \frac{1}{\sqrt{n^{2} + n}} + \frac{1}{\sqrt{n^{2} + 2n}} + ..... + \frac{1}{\sqrt{n^{2} + (n - 1)n}} \right\rbrack is equal to

A

2+222 + 2\sqrt{2}

B

2222\sqrt{2} - 2

C

222\sqrt{2}

D

2

Answer

2222\sqrt{2} - 2

Explanation

Solution

y=limn[1n+1n2+n+....+1n2+(n1)n]y = \lim_{n \rightarrow \infty}\left\lbrack \frac{1}{n} + \frac{1}{\sqrt{n^{2} + n}} + .... + \frac{1}{\sqrt{n^{2} + (n - 1)n}} \right\rbrack

y=limn[1n+1n1+1n+....+1n1+(n1)n]y = \lim_{n \rightarrow \infty}\left\lbrack \frac{1}{n} + \frac{1}{n\sqrt{1 + \frac{1}{n}}} + .... + \frac{1}{n\sqrt{1 + \frac{(n - 1)}{n}}} \right\rbrack

y=1nlimn[1+11+1n+....+11+(n1)n]y = \frac{1}{n}\lim_{n \rightarrow \infty}\left\lbrack 1 + \frac{1}{\sqrt{1 + \frac{1}{n}}} + .... + \frac{1}{\sqrt{1 + \frac{(n - 1)}{n}}} \right\rbrack

y=limn1nk=1n11+(k1)ny = \lim_{n \rightarrow \infty}\frac{1}{n}\sum_{k = 1}^{n}\frac{1}{\sqrt{1 + \frac{(k - 1)}{n}}}, Put k1n=x\frac{k - 1}{n} = x and 1n=dx\frac{1}{n} = dx

y=limn0n1ndx1+xy = \lim_{n \rightarrow \infty}\int_{0}^{\frac{n - 1}{n}}\frac{dx}{\sqrt{1 + x}} =limn2[1+x]0(n1n)= \lim_{n \rightarrow \infty}2\left\lbrack \sqrt{1 + x} \right\rbrack_{0}^{\left( \frac{n - 1}{n} \right)}

y=2limn[2n1n1]y = 2\lim_{n \rightarrow \infty}\left\lbrack \sqrt{\frac{2n - 1}{n}} - 1 \right\rbrack =2limn2n1n2= 2\lim_{n \rightarrow \infty}\sqrt{\frac{2n - 1}{n}} - 2

y=2limn21n2=222y = 2\lim_{n \rightarrow \infty}\sqrt{2 - \frac{1}{n}} - 2 = 2\sqrt{2} - 2.