Question
Question: \(\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{n} + \frac{1}{\sqrt{n^{2} + n}} + \frac{1}{\sqrt{...
limn→∞[n1+n2+n1+n2+2n1+.....+n2+(n−1)n1] is equal to
A
2+22
B
22−2
C
22
D
2
Answer
22−2
Explanation
Solution
y=limn→∞[n1+n2+n1+....+n2+(n−1)n1]
⇒ y=limn→∞[n1+n1+n11+....+n1+n(n−1)1]
⇒ y=n1limn→∞[1+1+n11+....+1+n(n−1)1]
y=limn→∞n1∑k=1n1+n(k−1)1, Put nk−1=x and n1=dx
⇒ y=limn→∞∫0nn−11+xdx =limn→∞2[1+x]0(nn−1)
⇒ y=2limn→∞[n2n−1−1] =2limn→∞n2n−1−2
⇒ y=2limn→∞2−n1−2=22−2.