Solveeit Logo

Question

Question: \[\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{n} + \frac{1}{n + 1} + \frac{1}{n + 2} + .....\fr...

limn[1n+1n+1+1n+2+.....12n]=\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{n} + \frac{1}{n + 1} + \frac{1}{n + 2} + .....\frac{1}{2n} \right\rbrack =

A

0

B

loge4\log_{e}4

C

loge3\log_{e}3

D

loge2\log_{e}2

Answer

loge2\log_{e}2

Explanation

Solution

limn[1n+1n+1+1n+2+.....+12n]\underset{n \rightarrow \infty}{\text{lim}}\left\lbrack \frac{1}{n} + \frac{1}{n + 1} + \frac{1}{n + 2} + ..... + \frac{1}{2n} \right\rbrack

= limn[1n+1n+1+1n+2+....+1n+n]\underset{n \rightarrow \infty}{\text{lim}}{}\left\lbrack \frac{1}{n} + \frac{1}{n + 1} + \frac{1}{n + 2} + .... + \frac{1}{n + n} \right\rbrack

=1nlimn[1+11+1n+11+2n+....+11+nn]= \frac{1}{n}\underset{n \rightarrow \infty}{\text{lim}}\left\lbrack 1 + \frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + .... + \frac{1}{1 + \frac{n}{n}} \right\rbrack

=1nlimnr=0n[11+rn]= \frac{1}{n}\underset{n \rightarrow \infty}{\text{lim}}{\sum_{r = 0}^{n}\left\lbrack \frac{1}{1 + \frac{r}{n}} \right\rbrack} =0111+xdx= \int_{0}^{1}{\frac{1}{1 + x}dx}

=[loge(1+x)]01=loge2loge1=loge2= \lbrack\log_{e}(1 + x)\rbrack_{0}^{1} = \log_{e}2 - \log_{e}1 = \log_{e}2.