Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{1 - n^{2}} + \frac{2}{1 - n^{2}} + ...... + \frac...

limn[11n2+21n2+......+n1n2]\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{1 - n^{2}} + \frac{2}{1 - n^{2}} + ...... + \frac{n}{1 - n^{2}} \right\rbrack is equal to

A

0

B

12- \frac{1}{2}

C

12\frac{1}{2}

D

None of these

Answer

12- \frac{1}{2}

Explanation

Solution

limn[11n2+21n2+......+n1n2]\lim_{n \rightarrow \infty}\left\lbrack \frac{1}{1 - n^{2}} + \frac{2}{1 - n^{2}} + ...... + \frac{n}{1 - n^{2}} \right\rbrack

=limnn1n2=12limnn2+n1n2=12.= \lim_{n \rightarrow \infty}\frac{\sum n}{1 - n^{2}} = \frac{1}{2}\lim_{n \rightarrow \infty}\frac{n^{2} + n}{1 - n^{2}} = - \frac{1}{2}.