Solveeit Logo

Question

Question: \[\lim_{n \rightarrow \infty}\left( \frac{n^{2} - n + 1}{n^{2} - n - 1} \right)^{n(n - 1)} =\]...

limn(n2n+1n2n1)n(n1)=\lim_{n \rightarrow \infty}\left( \frac{n^{2} - n + 1}{n^{2} - n - 1} \right)^{n(n - 1)} =

A

e

B

e2e^{2}

C

e1e^{- 1}

D

1

Answer

e2e^{2}

Explanation

Solution

limn(n2n+1n2n1)n(n1)=limn(n(n1)+1n(n1)1)n(n1)\lim_{n \rightarrow \infty}\left( \frac{n^{2} - n + 1}{n^{2} - n - 1} \right)^{n(n - 1)} = \lim_{n \rightarrow \infty}\left( \frac{n(n - 1) + 1}{n(n - 1) - 1} \right)^{n(n - 1)}

=limn(1+1n(n1))n(n1)(11n(n1))n(n1)=ee1=e2= \lim_{n \rightarrow \infty}\frac{\left( 1 + \frac{1}{n(n - 1)} \right)^{n(n - 1)}}{\left( 1 - \frac{1}{n(n - 1)} \right)^{n(n - 1)}} = \frac{e}{e^{- 1}} = e^{2}.

Alternative Method: limn(1+2n2n1)n(n1)\lim_{n \rightarrow \infty}\left( 1 + \frac{2}{n^{2} - n - 1} \right)^{n(n - 1)}= elimn2n(n1)n2n1=e2e^{\lim_{n \rightarrow \infty}\frac{2n(n - 1)}{n^{2} - n - 1}} = e^{2}.