Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\frac{(n!)^{1/n}}{n}\) or \(\lim_{n \rightarrow \infty}\left( \frac{n!}...

limn(n!)1/nn\lim_{n \rightarrow \infty}\frac{(n!)^{1/n}}{n} or limn(n!nn)1/n\lim_{n \rightarrow \infty}\left( \frac{n!}{n^{n}} \right)^{1/n} is equal to

A

e

B

e–1

C

1

D

None of these

Answer

e–1

Explanation

Solution

Let A=limn(n!)1/nnA = \lim_{n \rightarrow \infty}\frac{(n!)^{1/n}}{n}

logA=limnlog(1.2.3......nnn)1/n\log A = \lim_{n \rightarrow \infty}{\log\left( \frac{1.2.3......n}{n^{n}} \right)}^{1 ⥂ / ⥂ n}

logA=limnlog(1n.2n.3n....nn)1/n\log A = \lim_{n \rightarrow \infty}{\log\left( \frac{1}{n}.\frac{2}{n}.\frac{3}{n}....\frac{n}{n} \right)}^{1 ⥂ / ⥂ n}

logA=limn1nr=1n[log(rn)]\log A = \lim_{n \rightarrow \infty}\frac{1}{n}\sum_{r = 1}^{n}\left\lbrack \log\left( \frac{r}{n} \right) \right\rbrack

logA=01logxdx=[xlogxx]01\log A = \int_{0}^{1}{\log xdx} = \lbrack x\log x - x\rbrack_{0}^{1}logA=1\log A = - 1A=e1A = e^{- 1}