Question
Question: \(\lim_{n \rightarrow \infty}\frac{(n!)^{1/n}}{n}\) or \(\lim_{n \rightarrow \infty}\left( \frac{n!}...
limn→∞n(n!)1/n or limn→∞(nnn!)1/n is equal to
A
e
B
e–1
C
1
D
None of these
Answer
e–1
Explanation
Solution
Let A=limn→∞n(n!)1/n
⇒ logA=limn→∞log(nn1.2.3......n)1⥂/⥂n
⇒logA=limn→∞log(n1.n2.n3....nn)1⥂/⥂n
⇒ logA=limn→∞n1∑r=1n[log(nr)]
⇒ logA=∫01logxdx=[xlogx−x]01 ⇒ logA=−1 ⇒ A=e−1