Question
Question: \[\lim_{n \rightarrow \infty}\frac{1^{p} + 2^{p} + 3^{p} + ..... + n^{p}}{n^{p + 1}} =\]...
limn→∞np+11p+2p+3p+.....+np=
A
p+11
B
1−p1
C
p1−p−11
D
limx→0−f(x)=0
Answer
p+11
Explanation
Solution
limn→∞np+11p+2p+3p+.....+np= limn→∞∑r=1n[np+1rp]
= limn→∞n1∑r=1n(nr)p=∫01xpdx=[p+1xp+1]01=p+11.