Question
Question: \(\lim_{n \rightarrow \infty}\frac{1^{99} + 2^{99} + 3^{99} + .... + n^{99}}{n^{100}}\)=...
limn→∞n100199+299+399+....+n99=
A
10099
B
1001
C
991
D
1011
Answer
1001
Explanation
Solution
limn→∞n100199+299+399+....+n99=limn→∞∑r=1n(n100r99)
=limn→∞n1∑r=1n(nr)99=∫01x99dx=[100x100]01=1001.