Question
Question: \(\lim_{n \rightarrow \infty}\frac{1}{1^{3} + n^{3}} + \frac{4}{2^{3} + n^{3}} + .... + \frac{1}{2n}...
limn→∞13+n31+23+n34+....+2n1is equal to
A
31loge3
B
31loge2
C
31loge31
D
None of these
Answer
31loge2
Explanation
Solution
Let S=limn→∞13+n31+23+n34+...+2n1
limx→a(x−α)21−cos(ax2+bx+c)
∴S=limn→∞∑r=1nr3+n3r2=limn→∞∑r=1nn3(n3r3+1)r2
=limn→∞∑r=1nn1.[1+(nr)3](nr)2
Applying the formula, we get
A=∫011+x3x2dx
A=∫011+x3x2dx=31∫011+x33x2dx=31[loge(1+x3)]01=31loge2.