Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\frac{1}{1^{3} + n^{3}} + \frac{4}{2^{3} + n^{3}} + .... + \frac{1}{2n}...

limn113+n3+423+n3+....+12n\lim_{n \rightarrow \infty}\frac{1}{1^{3} + n^{3}} + \frac{4}{2^{3} + n^{3}} + .... + \frac{1}{2n}is equal to

A

13loge3\frac{1}{3}\log_{e}3

B

13loge2\frac{1}{3}\log_{e}2

C

13loge13\frac{1}{3}\log_{e}\frac{1}{3}

D

None of these

Answer

13loge2\frac{1}{3}\log_{e}2

Explanation

Solution

Let S=limn113+n3+423+n3+...+12nS = \lim_{n \rightarrow \infty}\frac{1}{1^{3} + n^{3}} + \frac{4}{2^{3} + n^{3}} + ... + \frac{1}{2n}

limxa1cos(ax2+bx+c)(xα)2\lim_{x \rightarrow a}\frac{1 - \cos(ax^{2} + bx + c)}{(x - \alpha)^{2}}

S=limnr=1nr2r3+n3=limnr=1nr2n3(r3n3+1)\therefore S = \lim_{n \rightarrow \infty}\sum_{r = 1}^{n}\frac{r^{2}}{r^{3} + n^{3}} = \lim_{n \rightarrow \infty}\sum_{r = 1}^{n}{}\frac{r^{2}}{n^{3}\left( \frac{r^{3}}{n^{3}} + 1 \right)}

=limnr=1n1n.(rn)2[1+(rn)3]= \lim_{n \rightarrow \infty}\sum_{r = 1}^{n}{}\frac{1}{n}.\frac{\left( \frac{r}{n} \right)^{2}}{\left\lbrack 1 + \left( \frac{r}{n} \right)^{3} \right\rbrack}

Applying the formula, we get

A=01x21+x3dxA = \int_{0}^{1}{}\frac{x^{2}}{1 + x^{3}}dx

A=01x21+x3dx=13013x21+x3dx=13[loge(1+x3)]01=13loge2.A = \int_{0}^{1}{}\frac{x^{2}}{1 + x^{3}}dx = \frac{1}{3}\int_{0}^{1}{}\frac{3x^{2}}{1 + x^{3}}dx = \frac{1}{3}\lbrack\log_{e}(1 + x^{3})\rbrack_{0}^{1} = \frac{1}{3}\log_{e}2.