Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}(0.2)^{\log_{\sqrt{5}}(1/4 + 1/8 + 1/16 + ...nterms)}\)is equal to-...

limn(0.2)log5(1/4+1/8+1/16+...nterms)\lim_{n \rightarrow \infty}(0.2)^{\log_{\sqrt{5}}(1/4 + 1/8 + 1/16 + ...nterms)}is equal to-

A

2

B

4

C

8

D

0

Answer

4

Explanation

Solution

limnα(0.2)log5[14((112n)112)]\lim_{n \rightarrow \alpha}(0.2)^{\log_{\sqrt{5}}\left\lbrack \frac{1}{4}\left( \frac{\left( 1 - \frac{1}{2^{n}} \right)}{1 - \frac{1}{2}} \right) \right\rbrack} = (0.2)log5[12(11α)](0.2)^{\log_{\sqrt{5}}\left\lbrack \frac{1}{2}\left( 1 - \frac{1}{\alpha} \right) \right\rbrack}

= 15log5(12)\frac{1}{5}^{\log_{\sqrt{5}}\left( \frac{1}{2} \right)}= 5log5(12)15^{{\log_{\sqrt{5}}\left( \frac{1}{2} \right)}^{- 1}}

= 5log5(2)5^{\log_{\sqrt{5}}(2)}Ž 511/2log525^{\frac{1}{1/2}\log_{5}2}Ž 52log525^{2\log_{5}2}= 5log5(2)25^{\log_{5}(2)^{2}}= 4