Solveeit Logo

Question

Question: \(\lim_{n \rightarrow \infty}\) \(\frac { 1 } { \mathrm { n } }\) \(\sum_{r = 1}^{n}\frac{r}{\sqrt{n...

limn\lim_{n \rightarrow \infty} 1n\frac { 1 } { \mathrm { n } } r=1nrn2+r2\sum_{r = 1}^{n}\frac{r}{\sqrt{n^{2} + r^{2}}} is equal to -

A

1 – 2\sqrt{2}

B

2\sqrt{2} – 1

C

2\sqrt{2}

D

2\sqrt{2}

Answer

2\sqrt{2} – 1

Explanation

Solution

limnα\lim_{n \rightarrow \alpha}1/nr=1nr/n1+(r/n)2\sum_{r = 1}^{n}{r/n\sqrt{1 + (r/n)^{2}}}\ 01x/1+x2dx\int_{0}^{1}{x/\sqrt{1 + x^{2}}dx} Ž 1 + x2 = t2

Ž xdx=tdt \12tdt/t\int_{1}^{\sqrt{2}}{tdt/t}Ž=2\sqrt{2}– 1