Question
Question: \(\lim_{m \rightarrow \infty}\left( \cos\frac{x}{m} \right)^{m}\)=0...
limm→∞(cosmx)m=0
A
0
B
e
C
1/e
D
1
Answer
1
Explanation
Solution
limm→∞(cosmx)m=limm→∞[1+(cosmx−1)]m
=limm→∞[1−(−cosmx+1)]m
=limm→∞[1−2sin22mx]m
=elimm→∞−(2sin22mx)m=elimm→∞−2(2mxsin2mx)2(4m2x2)m=e−2limm→∞4mx2=e0=1.