Solveeit Logo

Question

Question: \(\lim_{m \rightarrow \infty}\left( \cos\frac{x}{m} \right)^{m}\)=0...

limm(cosxm)m\lim_{m \rightarrow \infty}\left( \cos\frac{x}{m} \right)^{m}=0

A

0

B

e

C

1/e

D

1

Answer

1

Explanation

Solution

limm(cosxm)m=limm[1+(cosxm1)]m\lim_{m \rightarrow \infty}\left( \cos\frac{x}{m} \right)^{m} = \lim_{m \rightarrow \infty}\left\lbrack 1 + \left( \cos\frac{x}{m} - 1 \right) \right\rbrack^{m}

=limm[1(cosxm+1)]m= \lim_{m \rightarrow \infty}\left\lbrack 1 - \left( - \cos\frac{x}{m} + 1 \right) \right\rbrack^{m}

=limm[12sin2x2m]m= \lim_{m \rightarrow \infty}\left\lbrack 1 - 2\sin^{2}\frac{x}{2m} \right\rbrack^{m}

=elimm(2sin2x2m)m=elimm2(sinx2mx2m)2(x24m2)m=e2limmx24m=e0=1= e^{\lim_{m \rightarrow \infty} - \left( 2\sin^{2}\frac{x}{2m} \right)m} = e^{\lim_{m \rightarrow \infty} - 2\left( \frac{\sin\frac{x}{2m}}{\frac{x}{2m}} \right)^{2}\left( \frac{x^{2}}{4m^{2}} \right)m} = e^{- 2\lim_{m \rightarrow \infty}\frac{x^{2}}{4m}} = e^{0} = 1.