Solveeit Logo

Question

Question: \(\lim_{h \rightarrow 0}\frac{f\left( 2h + 2 + h^{2} \right) - f(2)}{f\left( h - h^{2} + 1 \right) -...

limh0f(2h+2+h2)f(2)f(hh2+1)f(1)\lim_{h \rightarrow 0}\frac{f\left( 2h + 2 + h^{2} \right) - f(2)}{f\left( h - h^{2} + 1 \right) - f(1)} , given that f’(2) = 6 and f’(1) = 4

A

Does not exist

B

Is equal to −3/2

C

Is equal to 3/2

D

Is equal to 3

Answer

Is equal to 3

Explanation

Solution

limh0f(2h+2+h2)f(2)(hh2+1)f(1)=[00form]\lim_{h \rightarrow 0}\frac{f\left( 2h + 2 + h^{2} \right) - f(2)}{\left( h - h^{2} + 1 \right) - f(1)} = \left\lbrack \frac{0}{0}form \right\rbrack

∴ Applying L’ Hospital’s rule we get

limh0f(2h+2+h2).(2+2h)(hh2+1)(12h)=f(2).2f(1).1=6×24×1=3\lim_{h \rightarrow 0}\frac{f'\left( 2h + 2 + h^{2} \right).(2 + 2h)}{\left( h - h^{2} + 1 \right) - (1 - 2h)} = \frac{f'(2).2}{f'(1).1} = \frac{6 \times 2}{4 \times 1} = 3