Solveeit Logo

Question

Question: \(\lim_{h \rightarrow 0}\frac{1}{h}\left\lbrack \frac{1}{x + h} - \frac{1}{x} \right\rbrack\) equals...

limh01h[1x+h1x]\lim_{h \rightarrow 0}\frac{1}{h}\left\lbrack \frac{1}{x + h} - \frac{1}{x} \right\rbrack equals

A

12x\frac{1}{2x}

B

12x- \frac{1}{2x}

C

1x2\frac{1}{x^{2}}

D

1x2- \frac{1}{x^{2}}

Answer

1x2- \frac{1}{x^{2}}

Explanation

Solution

limh01h[1x+h1x]\lim_{h \rightarrow 0}\frac{1}{h}\left\lbrack \frac{1}{x + h} - \frac{1}{x} \right\rbrack=limh01h[x(x+h)(x+h)x]\lim_{h \rightarrow 0}\frac{1}{h}\left\lbrack \frac{x - (x + h)}{(x + h)x} \right\rbrack=limh01h[h(x+h)x]\lim_{h \rightarrow 0}\frac{1}{h}\left\lbrack \frac{- h}{(x + h)x} \right\rbrack

=1x2- \frac{1}{x^{2}}.